## Altivar 71

Programming manual
Variable speed drives
for asynchronous motors

Warnings ..... 4
Steps for setting up the drive ..... 5
Factory configuration ..... 6
Your application functions ..... 7
Setup - Preliminary recommendations ..... 11
Graphic display terminal ..... 12
Description of the terminal ..... 12
Description of the graphic screen ..... 13
First power-up - [5. LANGUAGE] menu ..... 16
Subsequent power-ups ..... 17
Programming: Example of accessing a parameter ..... 18
Quick navigation ..... 19
Integrated display terminal ..... 22
Functions of the display and the keys ..... 22
Accessing menus ..... 23
Accessing menu parameters ..... 24
[2. LEVEL ACCESS] (LAC-) ..... 25
Structure of parameter tables ..... 27
[1.1 - SIMPLY START] (SIM-) ..... 28
[1.2 - MONITORING] (SUP-) ..... 36
[1.3- SETTINGS] (SEt-) ..... 42
[1.4- MOTOR CONTROL] (drC- ..... 54
[1.5- INPUTS / OUTPUTS CFG] (I-O-) ..... 65
[1.6-COMMAND] (CtL-) ..... 86
[1.7 - APPLICATION FUNCT.] (FUn-) ..... 99
[1.8 - FAULT MANAGEMENT] (FLt-) ..... 171
[1.9- COMMUNICATION] (COM-) ..... 184
[1.11- IDENTIFICATION] ..... 187
[1.12 - FACTORY SETTINGS] (Fst-) ..... 188
[1.13 - USER MENU] ..... 190
[1.14-PROG. CARD] ..... 191
[3. OPEN / SAVE AS] ..... 192
[4. PASSWORD] (COd-) ..... 194
[6. DISPLAY CONFIG. ] ..... 196
[7. MONITORING CONFIG.] ..... 200
[MULTIPOINT SCREEN] ..... 205
Maintenance ..... 206
Faults - Causes - Remedies ..... 207
User settings tables ..... 210
Index of functions ..... 211
Index of parameter codes ..... 212

When the drive is powered up, the power components and some of the control components are connected to the line supply. It is extremely dangerous to touch them. The drive cover must be kept closed.

In general, the drive power supply must be disconnected before any operation on either the electrical or mechanical parts of the installation or machine.
After the ALTIVAR has been switched off, wait for 15 minutes and allow the indicator light to go out before working on the equipment. This is the time required for the capacitors to discharge.

The motor can be stopped during operation by inhibiting start commands or the speed reference while the drive remains powered up. If personnel safety requires prevention of sudden restarts, electronic locking is performed by the Altivar 71's "Power Removal" function and the use of connection diagrams conforming to category 3 of standard EN954-1 and integrity level 2 according to IEC/EN 61508.

The drive is fitted with safety devices which, in the event of a fault, can shut down the drive and consequently the motor. The motor itself may be stopped by a mechanical blockage. Finally, voltage variations, especially line supply failures, can also cause shutdowns.
Unless the "Power Removal" safety function has been activated, if the cause of the shutdown disappears, there is a risk of restarting, which may endanger certain machines or installations, especially those, which must conform to safety regulations.

In this case the user must take precautions against the possibility of restarts, in particular by using a low speed detector to cut off power to the drive if the motor performs an unprogrammed shutdown.

The drive must be installed and set up in accordance with both international IEC and national standards. Bringing the device into conformity is the responsibility of the systems integrator who must observe the EMC directive and the LV directive within the European Union.

The Altivar 71 must be considered as a component: it is neither a machine nor a device ready for use in accordance with European directives (machinery directive and electromagnetic compatibility directive). It is the responsibility of the end user to ensure that the machine meets reference standards.

The drive must not be used as a safety device for machines posing a potential risk of material damage or personal injury (lifting equipment, for example). In such applications, overspeed checks and checks to ensure that the trajectory remains under constant control must be made by separate devices, which are independent of the drive.

The products and equipment described in this document may be changed or modified at any time, either from a technical point of view or in the way they are operated. Their description can in no way be considered contractual.


- Before you start programming, complete the user settings tables (page xx ).
- Perform an auto-tuning operation to optimize performance (page xx).
- If you get lost, revert to the factory settings (page xx).


## Factory configuration

## Drive factory settings

The Altivar 71 is factory-set for the most common operating conditions:

- Macro-configuration: Start/Stop
- Motor frequency (bFr): 50 Hz
- Constant torque application with sensorless flux vector control (Ctt = UUC)
- Normal stop mode on deceleration ramp (Stt = rMP)
- Stop mode in the event of a fault: Freewheel
- Linear ramps (ACC, dEC): 3 seconds
- Low speed (LSP): 0 Hz
- High speed (HSP): 50 Hz
- Motor thermal current ( ItH ) = Rated motor current (value depending on drive rating)
- Standstill injection braking current $(S d C 1)=0.7 \times$ rated drive current, for 0.5 seconds
- No automatic restarting after a fault
- Switching frequency 4 kHz for drives up to $18 \mathrm{~kW} ; 2.5 \mathrm{kHz}$ for higher power ratings
- Logic inputs:
- LI1, LI2 (2 directions of operation): 2-wire control on transition, LI1 = forward, LI2 = reverse
- LI3, LI4, LI5, LI6: Inactive (not assigned)
- Analog inputs:
- Al1: Speed reference 0-10 V
- AI2: 4-20 mA inactive (not assigned)
- Relay R1: The contact opens in the event of a fault (or drive off)
- Relay R2: Inactive (not assigned)
- Analog output AO1: 0-10 V, inactive (not assigned)

If the above values are compatible with the application, the drive can be used without changing the settings.

## Option card factory settings

The option card inputs/outputs are not factory-set.

## Your application functions

The tables on the following pages list the most common function/application combinations in order to assist you in making your selections. The applications listed in these tables concern the following machines in particular:

- Hoisting: Cranes, overhead cranes, gantries (vertical lifting, translation, slewing), lifting platforms
- Elevators: Elevator in retrofit up to 1.2 ms
- Handling: Palletizers/depalletizers, conveyors, roller tables
- Packing: Carton packers, labeling machines
- Textiles: Weaving looms, cards, washing machines, spinners, drawing frames
- Wood: Automatic lathes, saws, milling
- High inertia: Centrifuges, mixers, unbalanced machines (beam pumps, presses)
- Process

The combinations listed are neither mandatory nor exhaustive. Every machine has its own particular features.
Some functions have been designed specifically for a given application. In this case, the application is identified by a tab in the margin on the relevant programming pages.

## Motor control functions

|  |  | Applications |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Functions | Page |  |  | $\begin{aligned} & \text { 오 } \\ & \overline{\bar{O}} \\ & \text { 듶 } \\ & \end{aligned}$ | ס | ¢ ¢ - - -1 | 8 0 3 3 |  | 0 0 0 0 0 0 |
| V/f ratio |  |  |  | $\square$ |  |  |  | $\square$ |  |
| Sensorless flux vector control |  | - | $\square$ |
| Flux vector control with sensor |  | $\square$ | $\square$ | - | - | $\square$ | $\square$ | $\square$ | $\square$ |
| 2-point vector control |  | $\square$ |  |  |  | $\square$ |  |  |  |
| Open-loop synchronous motor |  |  |  |  |  | - |  |  |  |
| Output frequency 1000 Hz |  |  |  |  |  | $\square$ |  |  |  |
| Stressless PWM |  |  |  |  |  |  |  |  |  |
| DC bus connection |  |  |  |  |  | - |  |  | $\square$ |
| Reversible module connection |  |  |  | $\square$ |  |  |  |  |  |
| Motor fluxing via logic input |  | $\square$ |  |  | - |  |  |  |  |
| Switching frequency up to 16 kHz . |  |  |  |  |  | $\square$ |  |  |  |
| Auto-tune |  | - | - | $\square$ | - | - | - | - | $\square$ |

Your application functions

## Functions on speed references

| Functions | Page | Applications |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | O 0 3 |  | 发 |
| Differential bipolar reference |  | $\square$ |  | $\square$ | ■ |  |  |  |  |
| Reference delinearization (magnifying glass effect) |  | $\square$ |  | $\square$ |  |  |  |  |  |
| Frequency control input |  |  |  |  |  | $\square$ |  |  | $\square$ |
| Reference switching |  |  |  |  | $\square$ |  |  |  |  |
| Reference summing |  |  |  |  | $\square$ |  |  |  |  |
| Reference subtraction |  |  |  |  | $\square$ |  |  |  |  |
| Reference multiplication |  |  |  |  | $\square$ |  |  |  |  |
| S ramps |  | $\square$ | $\square$ | $\square$ |  |  |  |  |  |
| Jog operation |  |  |  | $\square$ |  | $\square$ |  |  | $\square$ |
| Preset speeds |  | $\square$ | $\square$ | $\square$ | $\square$ |  |  | $\square$ |  |
| +/- speed via single-action buttons |  |  |  |  |  |  |  |  | $\square$ |
| +/- speed via double-action buttons |  | $\square$ |  |  |  |  |  |  |  |
| +/- speed around a reference |  |  |  |  |  | $\square$ |  |  | $\square$ |
| Save reference |  |  |  |  |  |  |  |  | $\square$ |

Your application functions

Specific application functions

|  |  | Applications |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Functions | Page | 읓 ¢ ¢0ㅁ |  |  |  |  | O 0 3 |  |  |
| Fast stop |  |  |  |  |  |  | $\square$ | $\square$ |  |
| Management of limit switches |  | $\square$ | $\square$ | $\square$ |  |  |  |  |  |
| Brake control |  | $\square$ | $\square$ | $\square$ |  |  |  |  |  |
| Load measurement |  | $\square$ | $\square$ |  |  |  |  |  |  |
| High-speed hoisting |  | $\square$ |  |  |  |  |  |  |  |
| PID regulator |  |  |  |  |  |  |  |  | $\square$ |
| Torque regulation |  |  |  | $\square$ |  | $\square$ |  |  | $\square$ |
| Limitation of motor/generator torque |  |  |  | $\square$ |  | $\square$ |  | $\square$ | $\square$ |
| Load sharing |  | $\square$ |  | $\square$ |  |  |  |  |  |
| Line contactor control |  | $\square$ |  | $\square$ |  |  | ■ |  |  |
| Output contactor control |  |  | $\square$ |  |  |  |  |  |  |
| Positioning on limit switches |  |  |  | $\square$ | $\square$ |  |  |  |  |
| ENA system |  |  |  |  |  |  |  | $\square$ |  |
| Multiparameter |  |  |  |  |  |  |  |  |  |
| Multimotor |  | $\square$ |  | $\square$ | $\square$ |  |  |  |  |
| Multiconfiguration |  |  |  |  |  |  |  |  |  |
| Traverse control |  |  |  |  |  | $\square$ |  |  |  |
| Configuration of stops |  |  |  | ■ |  | $\square$ | ■ | ■ |  |

Your application functions

Safety/fault management functions

| Functions | Page | Applications |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { 으 } \\ & \text { 흫 } \\ & \text { 도 } \\ & \hline \end{aligned}$ | - |  | 0 0 3 |  |  |
| Power Removal (safety function) |  | ■ | $\square$ | $\square$ | ■ | $\square$ | $\square$ | $\square$ | $\square$ |
| Alarm handling |  | ■ | ■ | $\square$ | $\square$ | $\square$ | $\square$ | ■ | $\square$ |
| Fault management |  |  |  |  |  |  |  |  |  |
| IGBT tests |  | ■ | $\square$ | $\square$ | ■ | $\square$ | $\square$ | ■ | $\square$ |
| Catch on the fly |  |  |  |  |  | $\square$ | $\square$ | ■ |  |
| Thermal protection for braking resistors |  | $\square$ | ■ | $\square$ | $\square$ |  |  |  |  |
| Motor protection with PTC probes |  | ■ | ■ | $\square$ | $\square$ | $\square$ | $\square$ | ■ | $\square$ |
| Undervoltage management |  |  |  |  |  | $\square$ | $\square$ | ■ |  |
| Loss follower |  | ■ | ■ | $\square$ |  | $\square$ | $\square$ |  | $\square$ |
| Uncontrolled output cut |  |  |  | $\square$ |  |  |  |  |  |
| Automatic restart |  |  |  |  |  |  |  |  |  |

## Communication functions

| Functions | Page | Applications |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \stackrel{n}{0} \\ & \stackrel{0}{\omega} \\ & \frac{0}{0} \\ & \frac{\partial}{\omega} \end{aligned}$ | $\begin{aligned} & \text { 이 } \\ & \text { 흐 } \\ & \text { 돞 } \end{aligned}$ | 읃 |  | 8 <br>  <br> 3 |  |  |
| Modbus |  | $\square$ |
| CANopen |  | $\square$ |
| Communication scanner |  | $\square$ |

## Switching on and configuring the drive

Before switching on and configuring the drive:

- Check that the line voltage is compatible with the supply voltage range of the drive (see pages 3 and 4 of the ATV 71 Installation Manual). The drive may be damaged if the line voltage is not compatible.
- Ensure the logic inputs are switched off (state 0 ) to prevent accidental starting. Otherwise, an input assigned to the run command may cause the motor to start immediately on exiting the configuration menus.


## Power switching via line contactor

- Use inputs LI1 to LI6 to control the drive.

Avoid operating the contactor frequently (premature ageing of the filter capacitors).

- These instructions are vital for cycles $<\mathbf{6 0} \mathbf{s}$, otherwise the load resistor may be damaged.


## User settings and extension of functions

- The display unit and buttons can be used to modify the settings and to extend the functions described on the following pages.
- Reverting to factory settings is made easy by the [1.12 FACTORY SETTINGS] (FCS-) menu, see page xx.
- There are three types of parameter:
- Display: Values displayed by the drive
- Setting: Can be changed during operation or when stopped
- Configuration: Can only be modified when stopped and no braking is taking place. Can be displayed during operation.
- If possible, changes should only be made when the drive is at a standstill.
- If changes to settings have to be made during operation, make sure that they do not endanger equipment or personnel in any way.


## Starting

## Important:

- In the following cases, the motor can only be supplied with power after first resetting the "forward", "reverse" and "DC injection stop" commands:
- In factory settings mode
- On power-up or a manual fault reset or after a stop command

If they have not been reset, the drive will display "nSt" but will not start.

- These commands are taken into account without a reset being necessary if the automatic restart function has been configured ([Automatic restart] (Atr) parameter in the [1.8-FAULT MANAGEMENT] (FLt-) menu, see page 173),


## Test on a low-power motor or without a motor

- In factory settings mode, [Output phase loss] detection is active (OPL = YES), see page $\underline{x}$. To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives), deactivate "output phase loss" detection (OPL = NO).
- Configure [Motor control type] (Ctt) = [V/F 2pts] (UF2) or [V/f 5pts] (UF5) ([1.4-MOTOR CONTROL] (drC-) menu, see page 56).
- Motor thermal protection will not be provided by the drive if the motor current is less than 0.2 times the rated drive current.


## Using motors in parallel

- Configure [Motor control type] (Ctt) $=$ [V/F 2pts] (UF2) or [V/f 5pts] (UF5) ([1.4-MOTOR CONTROL] (drC-) menu, see page 56 ).
- Motor thermal protection is no longer provided by the drive. Provide an alternative means of thermal protection on every motor.


## Graphic display terminal

Although the graphic terminal is optional for low-power drives, it is a standard component on high-power drives (see catalog). The terminal can be disconnected and connected remotely (on the door of an enclosure for example) using the cables and accessories available as options (see catalog).

## Description of the terminal



1. Graphic display
2. Function keys F1, F2, F3, F4, see page 13.
3. STOP/RESET button
4. RUN button
5. Button for reversing the direction of rotation of the motor
6. Navigation button

- Press: - To save the current value (ENT)
- Turn CW/ - To increment or decrement a value

CCW: - To switch to the next or previous line
7. ESC button: To clear a value, a parameter or a menu and revert to the previous selection

Note: Buttons 3, 4 and 6 can be used to control the drive directly.

## Graphic display terminal

## Description of the graphic screen



1. Display line. Its content is configurable. In factory settings mode, it indicates:

- The drive status (see page 14)
- The active control channel:
- Term: Terminals
- LCC: Graphic display terminal
- MDB: Modbus
- CAN: CANopen
- NET: Communication card
- APP: Programmable card
- Frequency reference
- Current in the motor

2. Menu line. Indicates the name of the current menu or sub-menu
3. Menus, sub-menus, parameters, values, bar charts, etc. are displayed in dropdown window format on a maximum of 5 lines.

The line or value selected by the navigation button is displayed in reverse video.
4. Display functions assigned to keys F1 to F4, aligned with these keys, for example:

- Code (F1): Displays the code of the selected parameter, i.e. the code corresponding to the 7-segment display.
- >> (F3): Navigate horizontally to the right or switch to next menu/sub-menu (switching to the [2-LEVEL ACCESS] menu in this example) or, for a value, switch to the next digit down, displayed in reverse video (see the example below).
- << (F2): Navigate horizontally to the left, or switch to previous menu/sub-menu or, for a value, switch to the next digit up, displayed in reverse video (see the example below).
- Quick (F4): Quick navigation, see page 19.
- HELP: Contextual help

The function keys are dynamic and contextual.
Other functions (application functions) can be assigned to these keys via the [1.6-COMMAND] menu.
5.

Indicates that there are no more levels below this display window. Indicates that there are more levels below this display window.
6.


Indicates that there are no more levels above this display window.
Indicates that there are more levels above this display window.

## Graphic display terminal

## Drive status codes:

- ACC: Acceleration
- CLI: Current limit
- CTL: Controlled stop on input phase loss
- DCB: DC injection braking in progress
- DEC: Deceleration
- FLU: Motor fluxing in progress
- FST: Fast stop
- NLP: No line power (no line supply on L1, L2, L3)
- NST: Freewheel stop
- OBR: Auto-adapted deceleration
- PRA: Power Removal function active (drive locked)
- RDY: Drive ready
- SOC: Controlled output cut in progress
- TUN: Auto-tuning in progress
- USA: Undervoltage alarm


## Graphic display terminal

## Example configuration windows:

| RDY | Term | +0.00 Hz | 0 A |
| :--- | :--- | :--- | :---: |
| 5. LANGUAGE |  |  |  |
| ENGLISH |  |  |  |
| FRANCAIS |  | $\checkmark$ |  |
| DEUTSCH |  |  |  |
| ESPANOL |  |  |  |
| ITALIANO |  |  |  |
|  |  |  |  |
| CHINESE |  |  |  |



Example configuration window for one value:


## Graphic display terminal

## First power-up - [5. LANGUAGE] menu

The first time the drive is powered up, the user will automatically be guided through the menus as far as [1. DRIVE MENU]. The parameters in the [1.1 SIMPLY START] sub-menu must be configured and auto-tuning performed before the motor is started up.


## ATV71HU22N4

2.2kW/3HP 380/480V

| 3 seconds |  |  |  |
| :--- | :--- | :--- | :--- |
| RDY | Term | +0.00 Hz | 0 A |
| 5. LANGUAGE |  |  |  |
| ENGLISH |  |  |  |
| FRANCAIS <br> DEUTSCH <br> ESPANOL |  |  |  |
| ITALIANO |  | $\checkmark$ |  |
|  | $\ll$ | $\gg$ | Quick |

ESC

| RDY | Term | . 00 Hz | 0 A |
| :---: | :---: | :---: | :---: |
| 2. LEVEL ACCESS |  |  |  |
| BASIC |  |  |  |
| ADVANCED <br> ADVANCED GRAPHIC EXPERT |  |  |  |
|  | << | >> | Quick |

ESC

| RDY | Term | +0.00 Hz |
| :--- | :--- | :--- |
| 1. DRIVE MENU |  |  |
| 1.1 SIMPLY START |  |  |
| 1.2. MONITORING |  |  |
| 1.3. SETTINGS |  |  |
| 1.4. MOTOR CONTROL |  |  |
| 1.5. INPUTS / OUTPUTS CFG |  |  |
| Code $\ll$ |  |  |

ESC $\downarrow$

| RDY $\quad$ Term | +0.00 Hz |
| :--- | ---: |
| MAIN MENU |  |
| 1. DRIVE MENU |  |
| 2. LEVEL ACCESS |  |
| 3. OPEN / SAVE AS |  |
| 4. PASSWORD |  |
| 5. LANGUAGE |  |
| Code |  |

Display for 3 seconds following power-up

Switches to [5. LANGUAGE] menu automatically 3 seconds later. Select the language and press ENT.

Switches to [2. LEVEL ACCESS] menu (see page $2 \underline{25}$ )
Select the access level and press ENT.

Switches to [1. DRIVE MENU] (see page 21)

Press ESC to return to [MAIN MENU]

Subsequent power-ups


Switches to [1. DRIVE MENU] 3 seconds later.

If no operator inputs are made, switches to "Display" automatically 10 seconds later (the display will vary depending on the selected configuration).

May revert to [MAIN MENU] by pressing ENT or ESC.

## Graphic display terminal

## Programming: Example of accessing a parameter

## Accessing the acceleration ramp



Note:

- To select a parameter:
- Turn the navigation button to scroll vertically.
- To modify a parameter:
- Use << and >> to scroll horizontally and select the digit to be modified.
- Turn the navigation button to modify the digit.
- To cancel the modification:
- Press ESC.
- To save the modification:
- Press the navigation button (ENT).


## Graphic display terminal

## Quick navigation

If the "Quick" function is displayed above the F4 key, you can gain quick access to a parameter from any screen.

## Example:

| RDY | Term | $\begin{gathered} +0.00 \\ \mathrm{~Hz} \end{gathered}$ | 0 A |
| :---: | :---: | :---: | :---: |
| * 1.4 MOTOR CONTROL * |  |  |  |
| Standard mot. freq: 50 Hz IEC |  |  |  |
| Rated motor power: 0.37 kW |  |  |  |
| Rated motor volt.: 206 V |  |  |  |
| Rated mot. current: 1.0 A |  |  |  |
| Rated motor speed: 1480 rpm |  |  |  |
|  | << | >> | Quick |

Press F4 to access the Quick screen.
There are 4 options.

- [HOME]: Return to [MAIN MENU].

- [DIRECT ACCESS TO]: Opens the direct access window, which will contain the text "1.1": sub-menu 1 of menu 1 . The function keys << and >> can be used to select each of the numbers and the navigation button to increment or decrement the numbers: 1.3 in the example below.

- [10 last modifications]: Opens a window in which the last 10 parameters modified can be accessed directly.



## Graphic display terminal

[MAIN MENU] - Menu mapping


## Content of [MAIN MENU] menus

| [1. DRIVE MENU] | See over |
| :--- | :--- |
| [2. LEVEL ACCESS] | Defines which menus can be accessed (level of complexity) |
| [3. OPEN / SAVE AS] | Can be used to save and recover drive configuration files |
| [4. PASSWORD] | Password protection for configuration |
| [5. LANGUAGE] | Language selection |
| [6. DISPLAY CONFIG. ] | •Customization of parameters <br> - Custion of a customized user menu |
| [7. MONITORING CONFIG.] | Customization of information displayed on the graphic terminal during operation |

## Graphic display terminal

## [1. DRIVE MENU]

| RDY | Term $\quad+0.00 \mathrm{~Hz}$ | 0 A |
| :--- | :--- | :--- |
| 1. DRIVE MENU |  |  |
| 1.1 SIMPLY START |  |  |
| 1.2 MONITORING |  |  |
| 1.3 SETTINGS |  |  |
| 1.4 MOTOR CONTROL |  |  |
| 1.5 INPUTS / OUTPUTS CFG |  |  |
| Code << |  |  |
| 1.6 COMMAND | Quick |  |
| 1.7 APPLICATION FUNCT. |  |  |
| 1.8 FAULT MANAGEMENT |  |  |
| 1.9 COMMUNICATION |  |  |
| 1.10 DIAGNOSTICS |  |  |
| 1.11 IDENTIFICATION |  |  |
| 1.12 FACTORY SETTINGS |  |  |
| 1.13 USER MENU |  |  |
| 1.14 PROG. CARD |  |  |

## Content of [1. DRIVE MENU] menus

| [1.1 SIMPLY START]: | Simplified menu for fast startup |
| :--- | :--- |
| [1.2 MONITORING]: | Visualization of current, motor and input/output values |
| [1.3 SETTINGS]: | Setting parameters, can be modified during operation |
| [1.4 MOTOR CONTROL]: | Motor parameters (motor rating plate, auto-tuning, switching frequency, control algorithms, etc.) |
| [1.5 INPUTS / OUTPUTS CFG]: | I/O configuration (scaling, filtering, 2-wire control, 3-wire control, etc.) |
| [1.6 COMMAND: | Configuration of command and reference channels (terminals, display terminal, bus, etc.) |
| [1.7 APPLICATION FUNCT.]: | Configuration of application functions (e.g.: preset speeds, PID, brake logic control, etc.) |
| [1.8 FAULT MANAGEMENT]: | Configuration of fault management |
| [1.9 COMMUNICATION]: | Communication parameters (fieldbus) |
| [1.10 DIAGNOSTICS]: | Motor/drive diagnostics |
| [1.11 IDENTIFICATION]: | Identification of drive and internal options |
| [1.12 FACTORY SETTINGS]: | Access to configuration files and return to factory settings |
| [1.13 USER MENU]: | Specific menu set up by the user in the [6. DISPLAY CONFIG.] menu |
| [1.14 PROG. CARD]: | Configuration of optional programmable card |

## Integrated display terminal

Low-power Altivar 71 drives (see catalog) feature an integrated display terminal with a 7 -segment 4-digit display. The graphic display terminal described on the previous pages can also be connected to these drives as an option.

## Functions of the display and the keys

- 2 Modbus status LED
- Returns to the previous menu or parameter, or increases the displayed value
- Goes to the next menu or parameter, or decreases the displayed value

- 2 CANopen status LED
- Exits a menu or parameter, or aborts the displayed value to return to the previous value in the memory
- Enters a menu or a parameter, or saves the displayed parameter or value
- Pressing or does not store the selection.
- Press and hold down (>2 s) or $\nabla$ to scroll through the data quickly.


## Save and store the selection: ENT

The display flashes when a value is stored.
Normal display, with no fault present and no starting:

- 43.0: Display of the parameter selected in the SUP menu (default selection: motor frequency). In current limit mode, the display flashes.
- dCb: DC injection braking in progress
- FLU: Motor fluxing in progress
- FSt: Fast stop
- nLP: No line power (no line supply on L1, L2, L3)
- inSt: Freewheel stop
- PrA: Power Removal function active (drive locked)
- raY: Drive ready
- SOC: Controlled output cut in progress
- tUn: Auto-tuning in progress.

If there is a fault, the display flashes.

## Accessing menus



A dash appears after menu and sub-menu codes to differentiate them from parameter codes.
Examples: FUn- menu, ACC parameter.
The grayed-out menus may not be accessible depending on the level access configuration (LAC).

## Accessing menu parameters

Save and store the selection: ©NT



All the menus are "drop-down" type menus, which means that after the last parameter, if you continue to press $\nabla$, you will return to the first parameter and, conversely, you can switch from the first parameter to the last parameter by pressing

If, after modifying any of the parameters ( $\mathrm{n}^{\text {th }}$ ), you quit a menu and return to this menu without having accessed another menu in the meantime, you will be taken directly to the $\mathrm{n}^{\text {th }}$ parameter (see below). If, in the meantime, you have accessed another menu or have restarted the system, you will always be taken to the first parameter in the menu (see above).

## Selection of multiple assignments for one parameter



Example: List of group 1 alarms in [INPUTS / OUTPUTS CFG] menu (I-O-)
A number of alarms can be selected by "checking" them as follows.


The same principle is used for all multiple selections.

With graphic display terminal


ADVANCED
Access to 6 menus only, and access to all sub-menus in the [1. DRIVE MENU]


1. DRIVE MENU
1.14 PROG. CARD
2. LEVEL ACCESS
3. OPEN / SAVE AS
4. PASSWORD
5. LANGUAGE
Code $\ll \quad \gg \quad$ Quick
6. MONITORING CONFIG.

## EXPERT

Access to all menus and sub-menus as for [ADVANCED GRAPHIC] level, and access to additional parameters.


## With integrated display terminal:

| Code | Name/Description | Factory setting |
| :---: | :---: | :---: |
| L A [ - |  | AdU |
|  | - bAS: Limited access to SIM, SUP, SEt, FCS, USr, COd and LAC menus <br> - AdU: Access to all menus on the integrated terminal <br> - EPt: Access to all menus on the integrated terminal and access to additional parameters |  |

## [2. LEVEL ACCESS] (LAC-)

Comparison of the menus that can be accessed on the graphic terminal/integrated terminal

| Graphic display terminal | Integrated display terminal | Level access |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [2. LEVEL ACCESS] <br> [3. OPEN / SAVE AS] <br> [4. PASSWORD] <br> [5. LANGUAGE] <br> [1. DRIVE MENU] <br> 1.1 SIMPLY START <br> 1.2 MONITORING <br> 1.3 SETTINGS <br> 1.11 IDENTIFICATION <br> 1.12 FACTORY SETTINGS <br> 1.13 USER MENU | LAC- (Level access) <br> COd- (Password) <br> SIN- (Simply start) <br> SUP- (Monitoring) <br> SEt- (Settings) <br> FCS- (Factory settings) | $\begin{aligned} & \frac{0}{d} \\ & \frac{U}{U} \\ & \frac{U}{0} \\ & 0 \end{aligned}$ | $$ |  | 華 |
|  1.4 MOTOR CONTROL <br>  1.5 INPUTS / OUTPUTS CFG <br>  1.6 COMMAND <br>  1.7 APPLICATION FUNCT. <br>  1.8 FAULT MANAGEMENT <br>  1.9 COMMUNICATION <br>  1.10 DIAGNOSTICS <br>  1.14 PROG. CARD <br> [6. DISPLAY CONFIG. ]  <br> [7. MONITORING CONFIG.]  | drC- (Motor control) <br> I-O- (I/O configuration) <br> CtL- (Command) <br> FUn- (Application functions) <br> FLt- (Fault management) <br> CON- (Communication) <br> - <br> - |  | 苃 |  | $\begin{aligned} & \stackrel{-}{\alpha} \\ & \stackrel{\rightharpoonup}{\alpha} \\ & \underset{\sim}{x} \end{aligned}$ |
| Expert parameters | Expert parameters |  |  |  |  |

## Structure of parameter tables

The parameter tables in the descriptions of the various menus can be used with both the graphic terminal and the integrated terminal. They therefore contain information for these two terminals in accordance with the description below:

## Example:



Note: The text in square brackets [ ] indicates what you will see on the graphic display terminal.

1. Name of menu on 4-digit "7-segment" display
2. Sub-menu code on 4 -digit " 7 -segment" display
3. Parameter code on 4-digit "7-segment" display
4. Parameter value on 4 -digit " 7 -segment" display
5. Name of menu on graphic display terminal
6. Name of sub-menu on graphic display terminal
7. Name of parameter on graphic display terminal
8. Value of parameter on graphic display terminal

## [1.1 - SIMPLY START] (SIM-)

The [1.1-SIMPLY START] (SIM-) menu can be used for fast startup, which is sufficient for the majority of applications.

- The parameters in this menu can only be modified when the drive is stopped and no run command is present. Auto-tuning may cause the motor to start up.
- With the exception of the [Macro configuration] (CFG), the parameters in this menu can be accessed in other menus.


## Macro configuration

Macro configuration provides a means of speeding up the configuration of functions for a specific application domain. 7 macro configurations are available:

- Handling
- Hoisting
- General use
- PID regulator
- Communication bus
- Master/slave
- Run/stop (factory configuration)

Selecting a macro configuration forces the parameters in this macro configuration.
Each macro configuration can still be modified in the other menus.

## Macro configuration parameters

## Assignment of the inputs/outputs

| Input / output | Start/stop | [M. handling.] | [Gen. Use] | [Hoisting] | [PID regul.] | [Network C.] | [Mast./ slave] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AI1 | [Ref. 1 channel] | [Ref. 1 channel] | [Ref. 1 channel] | [Ref. 1 channel] | PID reference | [Ref. 2 channel] ([Ref. 1 channel] from bus) | [Ref. 1 channel] |
| Al2 | [Not assigned] | [Summing ref. 2] | [Summing ref. 2] | [Not assigned] | [PID feedback] | [Not assigned] | [Torque ref. channel] |
| AO1 | [Motor freq.] | [Signed torq] |
| R1 | [Faulty] |
| R2 | [Not assigned] | [Not assigned] | [Not assigned] | [Brk control] | [Not assigned] | [Not assigned] | [Not assigned] |
| LI1 (2-wire) | Forward |
| LI2 (2-wire) | [Reverse] |
| LI3 (2-wire) | [Not assigned] | [2 preset speeds] | [JOG] | [Fault reset] | [PID integral reset] | [Ref2. switching] | [Channel switching] |
| LI4 (2-wire) | [Not assigned] | [4 preset speeds] | [Fault reset] | [Ext. fault assign.] | $\left[\begin{array}{l} \text { [2 PID } \\ \text { presets] } \end{array}\right.$ | [Fault reset] | [Fault reset] |
| LI5 (2-wire) | [Not assigned] | [8 preset speeds] | [Torque limitation] | [Not assigned] | $\begin{aligned} & \text { [4 PID } \\ & \text { presets] } \end{aligned}$ | [Not assigned] | [Not assigned] |
| LI6 (2-wire) | [Not assigned] | [Fault reset] | [Not assigned] |
| LI1 (3-wire) | Stop |
| LI2 (3-wire) | Forward |
| LI3 (3-wire) | [Reverse] |
| LI4 (3-wire) | [Not assigned] | [2 preset speeds] | [JOG] | [Fault reset] | [PID integral reset] | [Ref2. switching] | [Channel switching] |
| LI5 (3-wire) | [Not assigned] | [4 preset speeds] | [Fault reset] | [Ext. fault assign.] | $\begin{aligned} & \text { [2 PID } \\ & \text { presets] } \end{aligned}$ | [Fault reset] | [Fault reset] |
| LI6 (3-wire) | [Not assigned] | [8 preset speeds] | [Torque limitation] | [Not assigned] | [4 PID presets] | [Not assigned] | [Not assigned] |
| Option cards |  |  |  |  |  |  |  |
| L17 (2-wire) | [Not assigned] |
| LI7 (3-wire) | [Not assigned] | [Fault reset] | [Not assigned] |
| LI8 to LI14 | [Not assigned] |
| LO1 to LO4 | [Not assigned] |
| R3/R4 | [Not assigned] |
| Al3, Al4 | [Not assigned] |
| Pulse in | [Not assigned] |
| AO2 | [I motor] | [ [ motor] |
| AO3 | [Not assigned] | [Signed torq] | [Not assigned] | [Signed torq] | [PID error] | [Not assigned] | [Motor freq.] |
| Keys on the graphic display terminal |  |  |  |  |  |  |  |
| Key F1 | [Not assigned] | Command via graphic terminal | [Not assigned] |
| $\begin{array}{\|l\|} \hline \text { Keys } \\ \text { F2,F3, F4 } \end{array}$ | [Not assigned] | [No |  |

[^0]Note: These assignments are forced every time the macro configuration changes.

## [1.1 - SIMPLY START] (SIM-)

## Macro configuration parameters

## Other configurations and settings

In addition to the assignment of inputs/outputs, other parameters are forced only in the Hoisting and Mast./slave macro configurations.

## Hoisting:

- [Movement type] (bSt) = [Hoisting] (UEr) page 126
- [Brake contact] $(\mathrm{bCl})=[\mathrm{No}](\mathrm{nO})$ page 126
- [Brake impulse] (bIP) = [No] (nO) page 126
- [Brake release I FW] (lbr) = [Rated mot. current] (nCr) page 126
- [Brake Release time] (brt) $=0.5$ s page 126
- [Brake release freq] (blr) = [Auto] (AUtO) page 126
- [Brake engage freq] (bEn) = [Auto] (AUto) page 127
- [Brake engage time] $(\mathrm{bEt})=0.5$ s page 127
- [Engage at reversal] $(\mathrm{bEd})=[\mathrm{No}](\mathrm{nO})$ page 127
- [Jump at reversal] $(\mathrm{JdC})=$ [Auto] (AUtO) page 127
- [Time to restart] (ttr) = 0 s page 127
- [Current ramp time] (brr) $=0$ s page 128
- [Low speed] (LSP) = Rated motor slip calculated by the drive, page xx
- [Output Phase Loss] (OPL) = [Yes] (YES) page 176. No further modifications can be made to this parameter.
- [Catch on the fly] $(F L r)=[\mathrm{No}](\mathrm{nO})$ page 174 . No further modifications can be made to this parameter.


## Mast./slave:

- [Motor control type] (Ctt) = [SVC I] (CUC) page $5 \underline{66}$

Note: These assignments are forced every time the macro configuration changes.

## Return to factory settings:

Returning to factory settings with [Config. Source] (?) = [Macro configuration] (?) page 189 will return the drive to the selected macro configuration, and not to the [Start/stop] (STS) factory settings macro configuration. The [Macro configuration] (CFG) parameter does not change, although [Customized macro (CCFG) disappears.

Example diagrams for use with the macro configuration

| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| $\begin{array}{rl\|} \hline t[L & \\ & 2[ \\ \exists[ \end{array}$ | [2/3 wire control] [2 wire] (2C) [3 wire] (3C) <br> 2-wire control: The open or closed state of the input controls the running or stopping. <br> Example of "source" wiring: <br> LI1: forward <br> LIx: reverse <br> 3-wire control (pulse control): a "forward" or "reverse" pulse is sufficient to command starting, a "stop" pulse is sufficient to command stopping. <br> Example of "source" wiring: <br> LI1: stop <br> LI2: forward <br> LIx: reverse <br> $\triangle$ <br> Any change in the assignment of [ $2 / 3$ wire] (tCC) must be confirmed on the graphic display terminal and the "ENT" key must be pressed and held down ( 2 s ) on the integrated terminal. <br> The following function will be returned to factory settings: [2 wire type] (tCt) page 65 as will all functions associated with logic inputs. <br> The macro configuration selected will also be reset if it has been customized (loss of custom settings). |
| [FL <br> Hat <br> H5t <br> LEn <br> PId <br> nEt <br> ח5L <br> 5 t 5 | [Macro configuration] [M. handling.] (HdG): Handling [Hoisting] (HSt): Hoisting [Gen. Use] (GEn): General use [PID regul.] (PId): PID regulation [Network C.] (nEt): Communication bus [Mast./slave] (MSL): Master/slave [Start/stop] (StS): Start/stop <br> Any change in the [Macro configuration] (CFG) must be confirmed on the graphic display terminal and the "ENT" key must be pressed and held down ( 2 s ) on the integrated terminal. Ensure that the selected macro configuration is compatible with the wiring diagram used. |
| [ [F] | [Customized macro] <br> Read-only parameter, only visible if at least one macro configuration parameter has been modified. |


| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| bFr <br> $5 \square$ <br> E | [Standard mot. freq] [ 50 Hz ] (50): IEC [ 60 Hz ] (60): NEMA <br> This parameter modifies the presets of the following parameters: [High speed] (HSP) page $\underline{x}$, [Freq. threshold] (Ftd) page $\underline{x}$, [Rated motor freq.] (FrS) (page 53) et [Max frequency] (tFr) page 53. |  |  |
| nPr | $\square$ [Rated motor power] <br> Rated motor power given on the rating plate | According to drive rating | According to drive rating |
| Un5 | [Rated motor volt.] <br> Rated motor voltage given on the rating plate <br> ATV71•e०M3X: 100 to 240 V <br> ATV71•00N4: 100 to 480 V | According to drive rating | According to drive rating |
| $n[r$ | $\square$ [Rated mot. current] <br> Rated motor current given on the rating plate | 0.25 to $1.5 \ln (1)$ | According to drive rating |
| $F r 5$ | $\square$ [Rated motor freq.] <br> Rated motor power given on the rating plate The factory setting is 50 Hz , or 60 Hz if bFr is set to 60 Hz . | 10 to 1000 Hz | 50 Hz |
| п 5 P | [Rated motor speed] <br> Rated motor speed given on the rating plate 0 to 9999 RPM then 10.00 to 32.76 KRPM on the integrated If, rather than the rated speed, the rating plate indicates the calculate the rated speed as follows: <br>  | 0 to 32767 RPM <br> rminal. <br> nchronous speed and <br> (50 Hz motors) <br> (60 Hz motors) | According to drive rating <br> e slip in Hz or as a \%, |
| t Fr | $\square$ [Max frequency] <br> The factory setting is 60 Hz , or preset to 72 Hz if [Standard The maximum value is limited by the following conditions: <br> - It must not exceed 10 times the value of [Rated motor frea <br> - It must not exceed 500 Hz if [Motor control type] (Ctt) (page ATV71HD37. <br> In fact, values between 500 Hz and 1000 Hz are only possi In this case, configure [Motor control type] (Ctt) before [Max | 10 to 1000 Hz <br> t. freq] (bFr) is set to <br> (FrS) (page 53) <br> 56) is not V/F or if the <br> e in V/F control and fo frequency] (tFr). | 60 Hz <br> Hz . <br> ve rating is higher than owers limited to 37 kW |

(1)In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.

| Code | Name／Description $\quad$ Factory setting |
| :---: | :---: |
| ヒリn $\begin{array}{r} \cap \square \\ \text { YES } \\ \forall \square \cap E \\ P \square \cap \end{array}$ | ［Auto－tuning］ <br> It is essential that all motor parameters（［Rated motor volt．］（UnS），［Rated motor freq．］（FrS），［Rated mot． current］（ nCr ），［Rated motor speed］（nSP），［Rated motor power］（nPr））are configured correctly before starting auto－tuning． <br> $\square[\mathrm{No}](\mathrm{nO})$ ：Auto－tuning not performed． <br> $\square$［Yes］（YES）：Auto－tuning is performed as soon as possible．Once it is complete，the parameter changes to ［Done］（dOnE）． <br> $\square$［Done］（dOnE）：Use of the values given the last time auto－tuning was performed． <br> $\square$［Power on］（POn）：Auto－tuning is performed on every power－up． <br> Warning： <br> －Auto－tuning is only performed if no stop command has been activated．If a＂freewheel stop＂or＂fast stop＂ function has been assigned to a logic input，this input must be set to 1 （active at 0 ）． <br> －Auto－tuning takes priority over any run or prefluxing commands，which will be taken into account after the auto－tuning sequence． <br> －If auto－tuning fails，the drive will display［ No ］（ nO ）and switch to fault mode［AUTO－TUNING］（tnF）． <br> －Auto－tuning may last for 1 to 2 seconds．Do not interrupt the process．Wait for the display to change to ＂［Done］（dOnE）＂or＂［No］（nO）＂． During auto－tuning the motor operates at rated current． |
| t $\\| 5$ <br> ヒ月女 <br> PEnd <br> PraE <br> FAIL <br> dロחE | ［Auto－tuning status］ <br> （information only，cannot be modified） ［Not done］（tAb）：The default stator resistance value is used to control the motor． ［Pending］（PEnd）：Auto－tuning has been requested but not yet performed． ［In Progress］（PrOG）：Auto－tuning in progress． ［Failed］（FAIL）：Auto－tuning has failed． ［Done］（dOnE）：The stator resistance measured by the auto－tuning function is used to control the motor． |
| PHr <br> 月女 <br> 月的 | ［Output Ph rotation］ ［ABC］（AbC）：Forward ［ACB］（ACb）：Reverse <br> This parameter can be used to reverse the direction of rotation of the motor without reversing the wiring． |
| It H | ［Mot．therm．current］ <br> Motor thermal protection current，to be set to the rated current indicated on the rating plate． |

（1）In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate．


## [1.2 - MONITORING] (SUP-)

## With graphic display terminal

This menu can be used to display the inputs/outputs, the internal drive variables and the communication variables.


## I/O

| RUN $\quad$ Term $\quad+50.00 \mathrm{~Hz} \quad 80 \mathrm{~A}$ |  |
| :--- | :--- |
| I/O MAPS |  |
| Logic inputs map |  |
| Analog inputs image |  |
| Logic outputs map |  |
| Analog outputs image |  |
| Freq. signal image |  |
| Code | Quick |

Switch from one screen to another
(from Logic inputs map
to Analog outputs image)
by pressing the function keys <<
and >>

Access to the selected input or output configuration:
Press ENT

| RUN | Term | +50.00 Hz | 80 A |
| :--- | :---: | :---: | :---: |
| LI1 CONFIGURATION |  |  |  |
| FORWARD |  |  |  |
| RAMP 2 SWITCH ASS. |  |  |  |
| Delay time | $: 10 \mathrm{~ms}$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


| RUN | Term | +50.00 Hz | 80 A |
| :--- | :---: | :---: | :---: |
| Analog inputs image |  |  |  |
| $\mathrm{AlI} 1=9.87 \mathrm{~V}$ |  |  |  |
| $\mathrm{Al} 2=2.35 \mathrm{~mA}$ |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Code | $\ll$ | $\gg$ | Quick |


| ENT | RUN | Term | $+50.00 \mathrm{~Hz}$ | 80 A |
| :---: | :---: | :---: | :---: | :---: |
|  | Al1 CONFIGURATION |  |  |  |
|  | Ref. 1 channel |  |  |  |
|  | Forced local channel Torque reference |  |  |  |
|  | Al1 mi |  |  | 0.0 V |
|  | Al1 max | alue |  | 10.0 V |
|  |  |  |  | Quick |

Q State 0

- State 1

| RUN | Term | +50.00 Hz | 80 A |
| :---: | :---: | :---: | :---: |
| Logic outputs map |  |  |  |
| R1 | R2 | LO |  |
| LOA: 0000000000000010b |  |  |  |
|  | $\ll$ | $\gg$ | Quick |


| ENT | RUN Term | $+50.00 \mathrm{~Hz}$ | 80 A |
| :---: | :---: | :---: | :---: |
|  | LO1 CONFIGURATION |  |  |
|  | BRAKE LOGIC CONTROL |  |  |
|  | Delay time | : 10 ms |  |
|  | Active at | : 1 |  |
|  | Holding time | : 20 ms |  |
|  | << | >> | Quick |


| RUN | Term | +50.00 Hz | 80 A |
| :--- | :---: | :---: | :---: |
| Analog outputs image |  |  |  |
| AO1 $=9.87 \mathrm{~V}$ |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Code | $\ll$ | $\gg$ | Quick |


| ENT | RUN | Term | $+50.00 \mathrm{~Hz}$ | 80 A |
| :---: | :---: | :---: | :---: | :---: |
|  | AO1 CONFIGURATION |  |  |  |
|  | MOTOR CURRENT |  |  |  |
|  | MIN |  | : 4 mA |  |
|  | MAX |  | : 20 mA |  |
|  | FILTER |  | : 10 ms |  |
|  |  |  |  | Quick |

## With graphic display terminal

## Communication

| RUN | Term |
| :--- | :---: |
| COMMUNICATION MAP |  |
| Cmd Channel: | Modbus |
| Cmd value: | ABCD Hex |
| Active ref. channel: | CANopen |
| Frequency ref: | -12.5 Hz |
| Status word: | 2153 Hex |
| Code | Quick |

W3141: F230 Hex
W2050: F230 Hex
W4325: F230 Hex
W0894: F230 Hex


[COMMUNICATION MAP] indicates the types of bus used for control or reference, the corresponding command and reference values, the status word, the words selected in the [DISPLAY CONFIG] menu, etc.
The display format (hexadecimal or decimal) can be configured in the [DISPLAY CONFIG] menu.
-OM. SCAN OUTPUT MAP
MD. WORD IMAGE

MODBUS HMI DIAG
MODBUS NETWORK DIAG
CANopen MAP
PROG. CARD SCANNER

| RUN | Term |
| :--- | :---: |
| FREQ. $+50.00 \mathrm{~Hz} \quad 80 \mathrm{~A}$ | WORD MAP |
| Modbus ref.: | 0.0 Hz |
| CANopen ref.: | 0.0 Hz |
| COM card ref.: | 0.0 Hz |
| Prog. Card ref.: | 0.0 Hz |
|  |  |
| Code |  |

[COM. SCANNER INPUT MAP] and [COM. SCANNER OUTPUT MAP]:
Visualization of registers exchanged periodically (8 input and 8 output) for Modbus and for fieldbus cards.

## With graphic display terminal

## Communication (continued)

| RUN $\quad$ Cerm | +50.00 Hz 80 A |
| :--- | :---: |
| COMMUNICATION MAPS |  |
| Cmd Channel: | Modbus |
| Cmd value: | ABCD Hex |
| Active ref. channel: | CANopen |
| Frequency ref: | -12.5 Hz |
| Status word: | 2153 Hex |
| Code | Quick |

1: F230 Hex
W2050: F230 Hex W4325: F230 Hex W0894: F230 Hex COM. SCAN INPUT MAP COM. SCAN OUTPUT MAP CMD. WORD IMAGE FREQ. REF. WORD MAP MODBUS HMI DIAG MODBUS NETWORK DIAG

The state of the LEDs, the periodic data, the address, speed, format, etc. are indicated for each bus.
$\otimes$ LED off
( LED on

CANopen MAP
PROG. CARD SCANNER


Communication via Modbus


Communication via the graphic display terminal

| RUN | $+50.00 \mathrm{~Hz} 80 \mathrm{~A}$ |
| :---: | :---: |
| MODBUS NETWORK DIAG |  |
| COM LED: | $\otimes$ |
| Code | Quick |

Communication via CANopen

the network tool.
Some PDOs cannot
be used.

| RUN $\quad$ Term $\quad+50.00 \mathrm{~Hz} \quad 80 \mathrm{~A}$ |  |
| :--- | :---: |
| PDO1 image |  |
| Received PDO1-1: | FDBA Hex |
| Received PDO1-2 |  |
| Received PDO1-3 |  |
| Received PDO1-4 |  |
| Transmit PDO1-1: | FDBA Hex |
| Code | Quick |

Transmit PDO1-2
Transmit PDO1-3
Transmit PDO1-4


Transmit PDO6-2
Transmit PDO6-3
Transmit PDO6-4

| RUN Term | $+50.00 \mathrm{~Hz} 80 \mathrm{~A}$ |
| :---: | :---: |
| PDO21 image |  |
| Received PDO21-1 | FDBA Hex |
| Received PDO21-2 |  |
| Received PDO21-3 |  |
| Received PDO21-4 |  |
| Transmit PDO21-1 | FDBA Hex |
| Code | Quick |
| Transmit PDO21-2 |  |
| Transmit PDO21-3 |  |
| Transmit PDO21-4 |  |

## With graphic display terminal

## Internal drive variables

| Name/Description |  |
| :---: | :---: |
| [Alarm groups] (ALGr) | Current alarm group numbers |
| [HMI Frequency ref.] (LFr) | in Hz . Frequency reference via the graphic terminal (can be accessed if the function has been configured). |
| [Internal PID ref.] (rPI) | in process value. PID reference via graphic terminal (can be accessed if the function has been configured). |
| [HMI torque ref.] (Ltr) | as a \%. Torque reference via graphic terminal. |
| [Multiplying coeff.] (MFr) | as a \% (can be accessed if [Multiplier ref.-] (MA2,MA3) page 103 has been assigned on the graphic terminal) |
| [Frequency ref] (FrH) | in Hz |
| [Torque reference] (?) | as a \% (can be accessed if the function has been configured) |
| [Output frequency] (rFr) | in Hz |
| [Motor current] (LCr) | in A |
| [Avg speed] (AVS) | in RPM: The parameter can be accessed if [ENA system] (EnA) = [Yes] (YES) (see page 61) |
| [Motor speed] (SPd) | in RPM |
| [Motor voltage] (UOP) | in V |
| [Motor power] (OPr) | in W |
| [Mains voltage] (ULn) | in V. Mains voltage from the point of view of the DC bus, motor running or stopped. |
| [Motor thermal state] (tHr) | as a \% |
| [Drv. thermal state] (thd) | as a \% |
| [Consumption] (APH) | in kWh |
| [Run time] (rtH) | in hours (length of time the motor has been switched on) |
| [Power on time] (PtH) | in hours (length of time the drive has been switched on) |
| [IGBT alarm counter] (tAC) | in seconds (length of time the "IGBT temperature" alarm has been active) |
| [PID reference] (rPC) | as a \% (can be accessed if the PID function has been configured) |
| [PID feedback] (rPF) | as a \% (can be accessed if the PID function has been configured) |
| [PID error] (rPE) | as a \% (can be accessed if the PID function has been configured) |
| [PID Output] (rPO) | in Hz (can be accessed if the PID function has been configured) |
| [Object 01] (o01) | Word generated via programmable card (can be accessed if the card has been inserted) |
| [Object 02] (002) | Word generated via programmable card (can be accessed if the card has been inserted) |
| [Object 03] (003) | Word generated via programmable card (can be accessed if the card has been inserted) |
| [Object 04] (004) | Word generated via programmable card (can be accessed if the card has been inserted) |
| [Object 05] (005) | Word generated via programmable card (can be accessed if the card has been inserted) |
| [Current config.] (CnFS) | CNFSO, 1 or 2 (can be accessed if configuration switching has been enabled, see page $\underline{x}$ ) |
| [Current param. set] (?) | SETO, 1 or 2 (can be accessed if parameter switching has been enabled, see page $\underline{x}$ ) |
| [ALARMS] (ALr-) | List of current alarms. If an alarm is present, a $\downarrow$ appears. |
| [OTHER STATUS] (SSt-) | List of secondary statuses: |
|  | - Current attained |
|  | - Freq. attained |
|  | - Freq. ref. attained |
|  | - Mot.th. attained |
|  | - Forced to local |
|  | - HSP attained |
|  | - In motor fluxing |
|  | - PTC1 alarm |
|  | - PTC2 alarm |
|  | - PTC3 alarm |
|  | - In fast stop |
|  | - Ext. fault alarm |
|  | - Auto restart |
|  | - In auto-tuning |
|  | - Underv. prevent. |
|  | - Slipping alarm |
|  | - DC bus loading |
|  | - No. P. supply |
|  | - In freewheel |
|  | - In DC injection |
|  | - In current limit. |
|  | - In acceleration |
|  | - In deceleration |
|  | - Output cut |
|  | - Drive ready |

## With integrated display terminal

This menu can be used to display the drive inputs and internal variables．

## Inputs

| Code | Name／Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| L 1 A－ | －Logic input functions |
| $\text { \|to } \begin{aligned} & L \square 1 A \\ & L / 4 A \end{aligned}$ | Logic input functions： <br> Can be used to display the functions assigned to each input．If no functions have been assigned，nO is displayed． Use the and $\boldsymbol{\nabla}$ arrows to scroll through the functions．If a number of functions have been assigned to the same input，check that they are compatible． |
| L 151 | State of logic inputs： <br> Can be used to visualize the state of logic inputs LI1 to LI8 （display segment assignment：high $=1$ ，low $=0$ ） <br> Example above：LI1 and LI6 are at 1；LI2 to LI5，LI7 and LI8 are at 0 ． |
| L 152 | State of logic inputs： <br> Can be used to visualize the state of logic inputs LI9 to LI14 （display segment assignment：high $=1$ ，low $=0$ ） <br> Example above：LI9 and LI14 are at 1，LI10 to LI13 are at 0 ． |
| A 1 月－ | －Analog input functions |
| A I I A <br> A ノ ᄅ <br> A 1 ヨ 月 <br> A 1 4 月 | Can be used to display the functions assigned to each input．If no functions have been assigned， nO is displayed．Use the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ arrows to scroll through the functions．If a number of functions have been assigned to the same input，check that they are compatible． |

## With integrated display terminal

## Internal drive variables

| Code | Name／Description | Unit |
| :---: | :---: | :---: |
| ALGr | Alarm groups：Current alarm group numbers |  |
| FrH | Frequency ref | Hz |
| LEr | Torque reference：Can be accessed if the function is configured | \％． |
| $r F_{r}$ | Output frequency | Hz |
| $L[r$ | Motor current | A |
| A $\downarrow 5$ | Average speed：The parameter can be accessed if EnA＝YES（see page 61） | RPM |
| $5 P d$ | Motor speed | RPM |
| UロP | Motor voltage | V |
| $\square P_{r}$ | Motor power | W |
| $U L \square$ | Mains voltage：Mains voltage from the point of view of the DC bus，motor running or stopped． | V |
| EHr | Motor thermal state | \％ |
| EHd | Drv．thermal state | \％ |
| A P H | Consumption | kWh |
| $r E H$ | Run time：Length of time the motor has been switched on | hours |
| PヒH | Power on time：Length of time the drive has been switched on | hours |
| t $\boldsymbol{A}$［ | IGBT alarm counter：Length of time the＂IGBT temperature＂alarm has been active | seconds |
| $r P[$ | PID reference：Can be accessed if the PID function has been configured | \％ |
| $r P F$ | PID feedback：Can be accessed if the PID function has been configured | \％ |
| $r P E$ | PID error：Can be accessed if the PID function has been configured | \％ |
| $r P \square$ | PID Output：Can be accessed if the PID function has been configured | Hz |
| － 1 | Object 01：Word generated via programmable card（can be accessed if the card has been inserted） |  |
| $\square \square 己$ | Object 02：Word generated via programmable card（can be accessed if the card has been inserted） |  |
| $\square \square \exists$ | Object 03：Word generated via programmable card（can be accessed if the card has been inserted） |  |
| －$\square 4$ | Object 04：Word generated via programmable card（can be accessed if the card has been inserted） |  |
| －प 5 | Object 05：Word generated via programmable card（can be accessed if the card has been inserted） |  |
| ［nF5 | Current config．：CNFO， 1 or 2 （can be accessed if configuration switching has been enabled，see page 162） |  |
| IFr $L$ | Current param．set：SEt0， 1 or 2 （can be accessed if configuration switching has been enabled，see page 158） |  |

The settings parameters can be modified with the drive running or stopped.
Check that it is safe to make changes during operation. Changes should preferably be made in stop mode.



These parameters only appear if the corresponding function has been selected in another menu. When the corresponding function is also accessible and adjustable from within the configuration menu, to aid programming their description is detailed in these menus, on the pages indicated.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| H 5 P | $\square$ [High speed] |  | 50 Hz |
|  | Motor frequency at maximum reference, can be set between [Low speed] (LSP) and [Max frequency] (tFr). The factory setting changes to 60 Hz if [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz}](60)$. |  |  |
| It H | $\square$ [Mot. therm. current] | 0.2 to $1.5 \ln$ (1) | According to drive rating |
|  | Motor thermal protection current, to be set to the rated current indicated on the rating plate. |  |  |
| 5 F [ | $\square$ [K speed loop filter | 0 to 100 | 65 |
|  | Speed loop filter coefficient |  |  |
| 5 PL | $\square$ [Speed prop. gain] | 0 to 1,000\% | 40\% |
|  | Speed loop proportional gain |  |  |
| $51 t$ | $\square$ [Speed time integral] | 1 to 1,000\% | 100\% |
|  | Speed loop integral time constant |  |  |

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive rating plate.


These parameters only appear if the corresponding function has been selected in another menu. When the corresponding function is also accessible and adjustable from within the configuration menu, to aid programming their description is detailed in these menus, on the pages indicated.

## Parameter settings for [K speed loop filter] (SFC), [Speed prop. gain] (SPG) and [Speed time integral] (SIt)

- These parameters can only be accessed in vector control profiles: [Motor control type] (Ctt) page $56=[S V C$ U] (UUC), [SVC I] (CUC), [FVC] (FUC) and [Sync. Mot] (SYn) and if [ENA system] (EnA) page $61=[\mathrm{No}](\mathrm{nO})$.
- The factory settings are suitable for most applications.


## Parameter [K speed loop filter] (SFC):

This parameter conditions the action of two other parameters.

- Set to 0 , the regulator is an "IP" type with filtering of the speed reference, for applications requiring flexibility and stability (hoisting or high inertia, for example).
- Set to 100, the regulator is a "PI" type, without filtering of the speed reference, for applications requiring a short response time (position control, for example).
- Settings between 0 and 100 will obtain an intermediate function.


## Setting with [K speed loop filter] (SFC) $=0$

- [Speed prop. gain] (SPG) affects excessive speed.
- [Speed time integral] (SIt) affects the passband and response time.


## Initial response

Reference division



## Reduction in SIT

Reference division


## Increase in SPG

Reference division


## Reduction in SIT

Reference division


## Increase in SPG

Reference division


## [1.3 - SETTINGS] (SEt-)

## Setting with [K speed loop filter] (SFC) = 100

- [Speed prop. gain] (SPG) affects the passband and response time.
- [Speed time integral] (SIt) affects excessive speed.


## Initial response

Reference division


## Initial response

Reference division


## Reduction in SIT ไ

Reference division


## Increase in SPG

Reference division


## Reduction in SIT

Reference division


## Increase in SPG

Reference division


| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $\square P E$ | $\square$ [ENA prop. gain] | 1 to 9999 | 250 |
| * | See page 61 |  |  |
| [ IE | $\square$ [ENA integral gain] | 0 to 9999 | 100 |
| $\lambda$ | See page 61 |  |  |
| $U F_{r}$ | $\square$ [IR compensation] | 25 to 200\% | 100\% |
| * | See page $\underline{54}$ |  |  |
| $5 L P$ | $\square$ [Slip compensation] | 0 to 150\% | 100\% |
| 大 | See page $\underline{54}$ |  |  |
| $d[F$ | [Ramp divider] <br> See page 107 | 0 to 10 | 4 |
|  |  |  |  |
| $\operatorname{ld}[$ | $\square$ [DC inject. level 1] | 0.1 to $1.5 \ln (1)$ | $0.64 \ln (1)$ |
|  | See page $\qquad$ <br> Level of DC injection braking current activated via logic input or selected as stop mode. |  |  |
| $\operatorname{ld}[2$ | $\square$ [DC inject. level 2] | 0.1 to $1.5 \ln (1)$ | $0.64 \ln (1)$ |
|  | See page $\qquad$ <br> Level of DC injection braking current activated via logic input or selected as stop mode. |  |  |
| tdI | $\square$ [DC inject. time 1] |  |  |
| * | See page 108 Maximum current injection becomes [DC inject. level | this time has elapse appears. | he injection curren |
| $\operatorname{td[}$ | $\square$ [DC inject. time 2] | $0.1 \text { to } 30 \mathrm{~s}$ | 5 s |
|  | See page 108 <br> Maximum injection time [DC inject. level 2] (IdC2) for injection selected as stop mode only. |  |  |
| Ad[ | [Auto DC injection] <br> See page $\qquad$ 109 <br> Automatic current injection on stopping (at the end of the ramp) |  | [Yes] (YES) |
|  |  |  |  |
| $5 d[1$ | $\square$ [l inject. DC auto 1] | 0 to $1.2 \ln (1)$ | $0.7 \ln (1)$ |
| * | Level of standstill DC injection current. The parameter can be accessed if [Auto DC injection] (AdC) is set to a value other than $[\mathrm{No}](\mathrm{nO})$. |  |  |
| $t \pm[1$ | $\square$ [Auto DC inj. time 1] | 0.1 to 30 s | 0.5 s |
| A | See page 109 <br> Standstill injection time. The parameter can be accessed if [Auto DC injection] (AdC) is set to a value other than $[\mathrm{No}](\mathrm{nO})$. |  |  |

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive rating plate.


These parameters only appear if the corresponding function has been selected in another menu. When the corresponding function is also accessible and adjustable from within the configuration menu, to aid programming their description is detailed in these menus, on the pages indicated.

| Code | Name/Description ${ }^{\text {a }}$ | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $5 d[2$ | [I inject. DC auto 2] <br> See page 109 <br> $2^{\text {nd }}$ level of standstill DC injection current | 0 to $1.2 \ln (1)$ | $0.5 \ln (1)$ |
| $\operatorname{td[}]$ | [Auto DC inj. time 2] <br> See page 109 <br> $2^{\text {nd }}$ standstill injection time | 0 to 30 s | 0 s |
| $5 F_{r}$ | [Switching freq.] <br> See page 62 <br> The switching frequency is set in accordance with the drive rating | and the [Switch. | 0 <br> type] (SFt). |
| [L I | [Current Limitation] <br> See page 148 <br> Used to limit the torque and the temperature rise of the motor. | $0 \text { to } 1.65 \ln (1)$ | $1.5 \ln (1)$ |
| $[L]$ | [I Limit. 2 value] <br> See page 148 | 0 to $1.65 \ln (1)$ | $1.5 \ln (1)$ |
| $\begin{aligned} & F L U \\ & n \square \square \\ & F \cap[ \\ & F[E \end{aligned}$ | - [Motor fluxing] [No] (nO): Function inactive [Non cont.] (FnC): Non-continuous mode [Continuous] (FCt): Continuous mode. <br> In order to obtain rapid high torque on startup, magnetic flux need <br> - This function can be selected in open or closed-loop operation <br> - In continuous mode (FCt), the drive automatically builds up flux <br> - In non-continuous mode: <br> - If an LI is assigned to the motor fluxing command, flux is buit [Fluxing assignment] (FLI) page 119). <br> - If no LI is assigned or if it is not active when a run command <br> - The flux current is greater than nCr (configured rated motor cu adjusted to the motor magnetizing current. | eds to be already es n. ux when it is powere uilt up when the com d is given, the motor urrent) when the flux | [ No ] (nO) <br> lished in the motor. <br> p. <br> nd is confirmed (see <br> uxed when it starts up. stablished and is then |
| t L 5 | [Low speed time out] <br> Maximum operating time at [Low speed] (LSP) <br> Following operation at LSP for a defined period, a motor stop is the reference is greater than LSP and if a run command is still Caution: Value 0 corresponds to an unlimited period. | 0 to 999.9 s <br> requested automatic present. | 0 s <br> y. The motor restarts if |
| $\lrcorner[F$ | [Jog frequency] <br> See page 110 <br> Reference in pulse mode | $0 \text { to } 10 \mathrm{~Hz}$ | $10 \mathrm{~Hz}$ |
|  | [Jog delay] <br> See page 110 <br> Anti-repeat delay between 2 consecutive jog operations | $0 \text { to } 2.0 \mathrm{~s}$ | $0.5 \mathrm{~s}$ |

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive rating plate.


These parameters only appear if the corresponding function has been selected in another menu. When the corresponding function is also accessible and adjustable from within the configuration menu, to aid programming their description is detailed in these menus, on the pages indicated.


These parameters only appear if the corresponding function has been selected in another menu. When the corresponding function is also accessible and adjustable from within the configuration menu, to aid programming their description is detailed in these menus, on the pages indicated.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| 5 P 15 | $\square$ [Preset speed 15] | 0 to 1000 Hz | 90 Hz |
| * | See page 113 <br> Preset speed 15 |  |  |
| 5 P16 | $\square$ [Preset speed 16] | 0 to 1000 Hz | 100 Hz |
| * | See page 113 <br> Preset speed 16 |  |  |
| ПFr | $\square$ [Multiplying coeff.] | 0 to 100\% |  |
|  | Multiplying coefficient, can be accessed if [Multiplier ref.-] (MA2,MA3) page 103 has been assigned on the graphic display terminal |  |  |
| $5 r P$ | $\square$ [+/- speed limitation] | 0 to 100\% | 10\% |
| $\star$ | See page 117 <br> Limitation of $+/$ - speed variation |  |  |
| rPL | $\square$ [PID prop. gain] | 0.01 to 100\% | 1 |
| $\star$ | See page 139 Proportional gain |  |  |
| r IL | $\square$ [PID integral gain] | 0.01 to 100\% | 1 |
| * | See page 139 Integral gain |  |  |
| $r d \square$ | $\square$ [PID derivative gain] | 0.01 to 100\% | 0 |
| * | See page 139 <br> Derivative gain |  |  |
|  | $\square$ [PID ramp] | 0.01 to 100\% | 0 |
| * | See page 140 Derivative gain |  |  |
| $P \square L$ | $\square[$ Min PID output] | 0 to 500 or 1000 according to rating | 0 Hz |
| * | See page 140 <br> Minimum value of regulator output in Hz |  |  |
| PロH | $\square$ [Max PID output] | 0 to 500 or 1000 according to rating | 60 Hz |
| $\star$ | See page 140 <br> Maximum value of regulator output in Hz |  |  |
| PAL | $\square[$ Min fbk alarm] | 0 to 65535 (1) | 100 |
| $\star$ | See page 140 <br> Minimum monitoring threshold for regulator feedback |  |  |
| PAH | [Max fbk alarm] <br> See page 140 <br> Maximum monitoring threshold for regulator feedback | 0 to 65535 (1) | 1000 |
| $\star$ |  |  |  |

(1) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit, e.g., 15.65 for 15650.

These parameters only appear if the corresponding function has been selected in another menu. When the corresponding function is also accessible and adjustable from within the configuration menu, to aid programming their description is detailed in these menus, on the pages indicated.

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| PEr | $\square$［PID error Alarm］ | 0 to 65535 （1） | 100 |
| ＊ | See page 140 <br> Regulator error monitoring threshold |  |  |
| P5r | $\square$［Speed input \％］ | 1 to 100\％ | 100\％ |
| ＊ | See page 141 <br> Multiplying coefficient for predictive speed input |  |  |
| гP己 | $\square$［Preset ref．PID 2］ | 0 to 65535 （1） | 300 |
| ＊ | See page 142 <br> Preset PID reference |  |  |
| 「Pヨ | $\square$［Preset ref．PID 3］ | 0 to 65535 （1） | 600 |
| ＊ | See page 142 <br> Preset PID reference |  |  |
| rP4 | $\square$［Preset ref．PID 4］ | 0 to 65535 （1） | 900 |
| $\star$ | See page 142 <br> Preset PID reference |  |  |
|  | $\square$［Brake impulse］ |  | ［ No ］（ nO ） |
| $\star$ | See page 126 |  |  |
| lbr | $\square$［Brake release I FW］ | 0 to $1.32 \ln (2)$ | 0 |
| ＊ | See page 126 <br> Brake release current threshold for forward movement |  |  |
| lrd | $\square$［Brake release I RV］ | 0 to $1.32 \ln (2)$ | 0 |
| ＊ | See page 126 <br> Brake release current threshold for reverse movement |  |  |
| brt | $\square$［Brake Release time | 0 to 5.00 s | 0 s |
| $\star$ | See page 126 Brake release time delay |  |  |
| b Ir | $\square$［Brake release freq］ |  | ［Auto］（AUtO） |
| $\star$ | See page 126 <br> Brake release frequency threshold |  |  |
| bEn | $\square$［Brake engage freq］ |  | ［Auto］（AUtO） |
| $\star$ | See page 127 <br> Brake engage frequency threshold |  |  |
| ヒbE | $\square$［Brake engage time］ | 0 to 5.00 s | 0 s |
| ＊ | See page 127 <br> Time delay before request to engage brake．To delay the engaging of the brake，for horizontal movement only， you wish the brake to engage when the drive comes to a complete stop． |  |  |

（1）If a graphic display terminal is not in use，values greater than 9999 will be displayed on the 4 －digit display with a period mark after the thousand digit，e．g．， 15.65 for 15650.
（2）In corresponds to the rated drive current indicated in the Installation Manual or on the drive rating plate．

[^1]
(1) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g., 15.65 for 15650.


These parameters only appear if the corresponding function has been selected in another menu. When the corresponding function is also accessible and adjustable from within the configuration menu, to aid programming their description is detailed in these menus, on the pages indicated.

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| LbLI | $\square$［Correction low］ | 0 to | 0 |
| ＊ | See page 64 <br> Minimum speed for load correction in Hz |  |  |
| Lbエ己 | $\square$［Correction high］ | 0 to | 0 |
| ＊ | See page 64 <br> Speed threshold in Hz above which maximum load correction is applied |  |  |
| Lbとヨ | $\square$［Torque offset］ | 0 to 300\％ | 0\％ |
| ＊ | See page 64 <br> Minimum torque for load correction as a \％of the rated torque |  |  |

These parameters only appear if the corresponding function has been selected in another menu．When the corresponding function is also accessible and adjustable from within the configuration menu，to aid programming their description is detailed in these menus，on the pages indicated．

The parameters in the [1.4-MOTOR CONTROL] menu can only be modified when the drive is stopped and no run command is present. Auto-tuning may cause the motor to start up.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & b F r \\ & 5 \square \\ & 5 \square \end{aligned}$ | [Standard mot. freq] [50 Hz] (50): IEC [60 Hz] (60): NEMA <br> This parameter modifies the presets of the following parameters: [High speed] (HSP) page $\underline{x x}$, [Freq. threshold] (Ftd) page xx, [Rated motor freq.] (FrS) (page 53) and[Max frequency] (tFr) page 53. |  |  |
| $n P r$ | [Rated motor power] <br> Rated motor power given on the rating plate | According to drive rating | According to drive rating |
| $U \cap 5$ | $\square$ [Rated motor volt.] <br> Rated motor voltage given on the rating plate <br> ATV71•0॰M3X: 100 to 240 V <br> ATV71e๗ゃN4: 100 to 480 V | According to drive rating | According to drive rating |
| $\cdots[r$ | [Rated mot. current] <br> Rated motor current given on the rating plate | $0.25 \text { to } 1.5 \ln (1)$ | According to drive rating |
| $F r 5$ | Rated motor power given on the rating plate The factory setting is 50 Hz , or 60 Hz if bFr is set to 60 Hz . |  |  |
| $\square 5 P$ | $\square$ [Rated motor speed] <br> Rated motor speed given on the rating plate 0 to 9999 RPM then 10.00 to 32.76 KRPM on the integrated If, rather than the rated speed, the rating plate indicates the sy calculate the rated speed as follows: <br> - Rated speed $=$ Synchronous speed $x \frac{100-\text { slip as a \% }}{100}$ or <br> - Rated speed $=$ Synchronous speed $x \frac{50-\text { slip in Hz }}{50}$ or <br> - Rated speed $=$ Synchronous speed $x \frac{60-\text { slip in Hz }}{60}$ | 0 to 32767 RPM <br> rminal. <br> nchronous speed an <br> (50 Hz motors) <br> (60 Hz motors) | According to drive rating <br> e slip in Hz or as a |
| t $F_{r}$ | [Max frequency] <br> The factory setting is 60 Hz , or preset to 72 Hz if [Standard m The maximum value is limited by the following conditions: <br> - It must not exceed 10 times the value of [Rated motor freq <br> - It must not exceed 500 Hz if [Motor control type] (Ctt) (page ATV71HD37. <br> In fact, values between 500 Hz and 1000 Hz are only possib In this case, configure [Motor control type] (Ctt) before [Ma | 10 to 1000 Hz <br> t. freq] (bFr) is set to <br> (FrS) (page 53) <br> 6) is not V/F or if the <br> in V/F control and for frequency] (tFr). | $60 \mathrm{~Hz}$ <br> Hz . <br> ve rating is higher th owers limited to 37 |

(1) In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.

| Code | Name／Description | Factory setting |
| :---: | :---: | :---: |
|  | ［Auto－tuning］ <br> It is essential that all motor parameters（［Rated motor volt．］（UnS），［Rated motor freq．］（FrS），［Rated mot． current］（ nCr ），［Rated motor speed］（nSP），［Rated motor power］（ nPr ））are configured correctly before starting auto－tuning． <br> $\square$［No］（nO）：Auto－tuning not performed． <br> $\square$［Yes］（YES）：Auto－tuning is performed as soon as possible．Once it is complete，the parameter changes to ［Done］（dOnE）． <br> $\square$［Done］（dOnE）：Use of the values given the last time auto－tuning was performed． <br> $\square$［Power on］（POn）：Auto－tuning is performed on every power－up． <br> Warning： <br> －Auto－tuning is only performed if no stop command has been activated．If a＂freewheel stop＂or＂fast stop＂ function has been assigned to a logic input，this input must be set to 1 （active at 0 ）． <br> －Auto－tuning takes priority over any run or prefluxing commands，which will be taken into account after the auto－tuning sequence． <br> －If auto－tuning fails，the drive will display［ No ］（ nO ）and switch to fault mode［AUTO－TUNING］（tnF）． <br> －Auto－tuning may last for 1 to 2 seconds．Do not interrupt the process．Wait for the display to change to ＂［Done］（dOnE）＂or＂［No］（nO）＂． <br> $\triangle$ <br> During auto－tuning the motor operates at rated current． |  |
| ヒ U 5 <br> ヒ 月 ロ PEnd PrロL FRIL $d \square \cap E$ | ［Auto－tuning status］ <br> （information only，cannot be modified） ［Not done］（tAb）：The default stator resistance value is used to control the motor． ［Pending］（PEnd）：Auto－tuning has been requested but not yet performed． ［In Progress］（PrOG）：Auto－tuning in progress． ［Failed］（FAIL）：Auto－tuning has failed． ［Done］（dOnE）：The stator resistance measured by the auto－tuning function is used | Not done］（tAb） |
| PHr 月b［ HCb | ［Output Ph rotation］ ［ABC］（AbC）：Forward ［ACB］（ACb）：Reverse <br> This parameter can be used to reverse the direction of rotation of the motor without | BC <br> sing the wiring |
| $U F_{r}$ | ［IR compensation］ <br> The parameter can be accessed if［Motor control type］（Ctt）＝［SVC U］（UUC）or［SVC Used to optimize the torque at very low speed（increase［IR compensation］（UFr）if the Check that the value of［IR compensation］（UFr）is not too high for when the motor is wan | 100\％ <br> ］（CUC）． <br> torque is insufficient）． （risk of instability）． |
| $5 L P$ | ［Slip compensation］ $\begin{equation*} 0 \text { to 150\% } \tag{1} \end{equation*}$ <br> The parameter can be accessed if［Motor control type］（Ctt）＝［SVC U］（UUC）or［SVC Used to adjust the slip compensation value fixed by motor rated speed． <br> The speeds given on motor rating plates are not necessarily exact． <br> －If slip setting＜actual slip：the motor is not rotating at the correct speed in steady stat <br> －If slip setting＞actual slip：the motor is overcompensated and the speed is unstable． | 100\％ <br> ］（CUC）． <br> te． |

（1）The parameter can also be accessed in the［1．3－SETTINGS］（SEt－）menu．

## [1.4 - MOTOR CONTROL] (drC-)

Parameters that can be accessed in [EXPERT] mode.

| Code | Name |
| :---: | :---: |
| r $5 \Pi$ | $\square[\mathrm{R} 1 \mathrm{r}]$ |
| $1 \pm \Pi$ | $\square$ [ldr] |
| LF $\quad$ I | $\square$ [LFr] |
| ヒrп | $\square$ [T2r] |
| n5L | $\square$ [NSLr] |
| $P P_{n}$ | $\square$ [Pr] |
| r 5 A | $\square$ [R1w] |
| $1 d$ A | $\square$ [Idw] |
| L F R | $\square$ [Lfw] |
| Er ${ }^{\text {R }}$ | $\square$ [T2w] |


［1．4－MOTOR CONTROL］（drC－）

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| リロ | V／F profile setting．The parameter can be accessed （UF5） | According to rating <br> ontrol type］（Ctt）＝［V／F | 0 <br> ts］（UF2）or［V／F 5pts］ |
| 41 | $\square$［U1］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／ | 0 <br> pts］（UF5） |
| F I | $\square$［F1］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／ | $\begin{align*} & \hline 0  \tag{1}\\ & \hline \text { spts] (UF5) } \end{align*}$ |
| リ己 | $\square$［U2］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／ | 0 <br> pts］（UF5） |
| $F 2$ | $\square$［F2］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／ | $\begin{align*} & \hline 0  \tag{1}\\ & \hline \text { 5pts] (UF5) } \end{align*}$ |
| リヨ | $\square$［U3］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／ | $0$ <br> pts］（UF5） |
| F $\exists$ | $\square$［F3］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／ | 0 <br> pts］（UF5） |
| 44 | $\square$［U4］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／F | 0 <br> pts］（UF5） |
| F 4 | $\square$［F4］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／F | $\begin{align*} & \hline 0  \tag{1}\\ & \hline \text { 5pts] (UF5) } \end{align*}$ |
| U 5 | $\square$［U5］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／ | 0 <br> pts］（UF5） |
| F 5 | ［F5］ <br> V／F profile setting．The parameter can be accessed | According to rating <br> ontrol type］（Ctt）＝［V／ | $\begin{align*} & \hline 0  \tag{1}\\ & \hline \text { sts] (UF5) } \\ & \hline \end{align*}$ |

（1）The parameter can also be accessed in the［1．3－SETTINGS］（SEt－）menu．

\begin{tabular}{|c|c|c|}
\hline Code \& Name/Description \({ }^{\text {a }}\) Adjustment range \& Factory setting \\
\hline  \& \multicolumn{2}{|l|}{\begin{tabular}{l}
[Vector Control 2pt] \\
The parameter can be accessed if [Motor control type] (Ctt) = [SVC U] (UUC) or [SVC I] (CUC) or [FVC] (FVC).
[ No ] ( nO O : Function inactive.
[Yes] (YES): Function active. \\
Used in applications on which the rated frequency and speed need to be exceeded in order to optimize operation at constant power. \\
This requires the drive output voltage to be greater than the rated motor voltage. The voltage/frequency profile must then be adapted in accordance with the motor's capabilities to operate at maximum voltage UCP and maximum frequency FCP. \\
Motor voltage
\end{tabular}} \\
\hline \(U[P\) \& \begin{tabular}{l|l}
\(\square\) [V. constant power] \& According to rating \\
The parameter can be accessed if [Vector Control 2pt] (UC2) \(=[\) Yes] (YES)
\end{tabular} \& \[
\begin{aligned}
\& =\text { [Rated motor volt. }] \\
\& \text { (UnS) }
\end{aligned}
\] \\
\hline F [ P \& \begin{tabular}{l}
[Freq. Cst. Power] \\
The parameter can be accessed if [Vector Control 2pt] (UC2) \(=[\) Yes] (YES)
\end{tabular} \& \[
\begin{aligned}
\& =[\text { Rated motor freq. }] \\
\& \text { (FrS) }
\end{aligned}
\] \\
\hline En5

A月号
Ab

A \& | [Encoder signals] |
| :--- |
| The parameter can be accessed if an encoder card has been inserted. To be configured in accordance with the type of encoder used. [AABB] (AAbb): For signals A, A-, B, B-. [AB] (Ab): For signals $A, B$. [A] (A): For signal A. | \& [ No ] (nO) <br>

\hline PLI \& | $\square$ [Number of pulses] |
| :--- |
| Number of pulses per revolution. |
| The parameter can be accessed if an encoder card has been inserted (1). | \& 1024 <br>

\hline
\end{tabular}

(1) The encoder parameters can only be accessed if the encoder card has been inserted and the available selections will depend on the type of encoder card used. The encoder configuration can also be accessed in the [1.5- INPUTS / OUTPUTS CFG] (I/O) menu.

(1)The encoder parameters can only be accessed if the encoder card has been inserted and the available selections will depend on the type of encoder card used. The encoder configuration can also be accessed in the [1.5- INPUTS / OUTPUTS CFG] (I/O) menu.

## ENA SYSTEM

ENA SYSTEM is a control profile for rotating machines with unbalanced load.
It is used primarily in oil pumps. The operating principle applied supports:

- Operation without a braking resistor
- Reduced mechanical stress on the rod
- Reduced line current fluctuations
- Reduced energy consumption by improving the electric power/current ratio


## ENA prop. gain

This setting is made in order to achieve a compromise between the reduced energy consumption (and/or line current fluctuations) and the mechanical stress to which the rod is subject.
Energy is saved by reducing current fluctuations and increasing the current while retaining the same average speed.

## ENA integral gain

This setting is used to smooth the DC bus voltage.
Start up the machine with a low integral and proportional gain (proportional $25 \%$ and integral $10 \%$ ) in order to avoid an overvoltage trip in the absence of a braking resistor. See if these settings are suitable.

## Recommended settings to be made during operation:

- To eliminate the braking resistance and therefore increase the DC bus voltage: Call up the machine speed on the graphic display terminal. Reduce the value of the integral gain until the machine speed drops. When it does, increase the integral gain until the machine speed stabilizes.
Use the graphic display terminal or an oscilloscope to check that the DC bus voltage is stable.
- To save energy:

It may be possible to save even more energy by reducing the proportional gain (gradually) in reducing the maximum value of the line current but this will increase speed variations and therefore mechanical stress.
The aim is to identify settings that will enable energy to be saved and minimize mechanical stress.
When reducing the proportional gain, it may be necessary to readjust the integral gain in order to avoid an overvoltage trip.
Note: Once the settings are complete, check that the pump starts up correctly. Lack of torque on startup may be due to the ENA integral gain being set too low.

## Reduction ratio

This setting corresponds to the motor speed ahead of gearbox/speed after gearbox ratio. This parameter is used to display the average speed in Hz and the machine speed in customer units (e.g., strokes per minute) on the graphic display terminal. In order to be displayed on the graphic terminal, these values must be selected in the [1.2-MONITORING] (SUP-) menu.

## [1.4-MOTOR CONTROL] (drC-)

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $E \cap A$ $\begin{array}{r} n \square  \tag{1}\\ Y E 5 \end{array}$ | [ENA system] <br> The parameter can be accessed if [Motor control type] (Ctt) = [SVC U] (UUC), see page $5 \underline{56}$. [ No l ( nO O : : Function inactive [Yes] (YES) : Function active. |  |  |
| LPE | $\square$ [ENA prop. gain] <br> The parameter can be accessed if [ENA system] (En | 1 to 9999 <br> ] (YES) | 250 |
| L IE | $\square$ [ENA integral gain] <br> The parameter can be accessed if [ENA system] (E | $\begin{equation*} 0 \text { to } 100 \% \tag{1} \end{equation*}$ <br> ] (YES) | 100\% |
| r ${ }^{\text {P }}$ | [Reduction ratio] <br> The parameter can be accessed if [ENA system] (En | $10.0 \text { to } 999.9$ <br> ] (YES) | 10 |

(1)The parameter can also be accessed in the [1.3- SETTINGS] (SEt-) menu.

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.

\begin{tabular}{|c|c|c|c|}
\hline Code \& Name/Description \& Adjustment range \& Factory setting <br>
\hline LロA

חロ

YES \& \multicolumn{3}{|l|}{| $\square$ [Load sharing] |
| :--- |
| When 2 motors are connected mechanically and therefore forced to the same speed, and each is controlled by a drive, this function can be used to improve torque distribution between the two motors. For this, it varies the speed based on the torque, having the same effect as slip. [No] (nO) : Function inactive [Yes] (YES) : Function active |
| This parameter is only visible if [Motor control type] $(\mathrm{Ctt})=[$ SVC I] (CUC) (see page 56). |} <br>

\hline LbL \& \multirow[t]{2}{*}{| [Load correction] |
| :--- |
| Rated correction in Hz. |
| The parameter can be accessed if [Load sharing] (LbA) = [Yes] |} \& 0 to ? \& 0 <br>

\hline \& \& (YES) \& <br>
\hline
\end{tabular}

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

Load sharing, parameters that can be accessed at expert level


The load sharing factor $K$ is determined by the torque and speed, with two factors $K 1$ and $K 2(K=K 1 \times K 2)$.
K1



LBC

(1) The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

| Code | Name/Description ${ }^{\text {a }}$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
|  | [2/3 wire control] [2 wire] (2C) [3 wire] (3C) <br> 2-wire control: The open or closed state of the input controls running or stopping. <br> Example of "source" wiring: <br> LI1: forward <br> Llx: reverse <br> 3-wire control (pulse control): a "forward" or "reverse" pulse is sufficient to command starting, a "stop" pulse is sufficient to command stopping. <br> Example of "source" wiring: <br> LI1: stop <br> LI2: forward <br> LIx: reverse <br> $\triangle$ <br> Any change in the assignment of [2/3 wire] (tCC) must be confirmed on the graphic display terminal and the "ENT" key must be pressed and held down (2 s) on the integrated terminal. <br> The [2 wire type] (rrS) and [Rev. assignment] ( tCt ) functions below will be returned to factory settings, along with all functions associated with logic inputs. <br> We recommend that this parameter is configured before configuring the [1.6 COMMAND] (CtL-) and [1.7 APPLICATION FUNCT.] (FUn-) menus. |  |
| tre LEL trn PFO | $\square$ [2 wire type] [Level ] (LEL): State 0 or 1 is taken into account for run (1) or stop (0). [Transition] (trn): A change of state (transition or edge) is necessary to initiate ope accidental restarts after a break in the power supply. [Prior. FW] (PFO): State 0 or 1 is taken into account for run or stop, but the "forwa priority over the "reverse" input. | [Level ] (LEL) <br> on, in order to prevent input always takes |
|  | $\square$ [Rev. assignment] [No] (nO): Not assigned [LII] (LI1) [...] (...): See the assignment conditions on page 94. Assignment of the reverse direction command. | [12] (LI2) |


| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| L I - | - [LI1 CONFIGURATION] |
| L I A | [LI1 assignment] <br> Read-only parameter, cannot be configured. <br> It displays all the functions that are assigned to input LI1 in order to check multiple assignments. |
| L I Id | $\square$ [Ll1 On Delay] 0 to $2000 \mathrm{~ms} \quad 0$ |
|  | This parameter is used to take account of the change of the logic input to state 1 with a delay that can be adjusted between 0 and 2000 milliseconds, in order to filter out possible interference. The change to state 0 is taken into account without delay. <br> Make sure that the delay set does not pose a risk or lead to undesired operation. |
| L - - | - [LIX CONFIGURATION] |
|  | All the logic inputs available on the drive are processed as in the example for LI1 above, up to LI6, LI10 or LI14, depending on whether or not option cards have been inserted. |

## [1.5- INPUTS / OUTPUTS CFG] (I-O-)

## Configuration of analog inputs and Pulse input

The minimum and maximum input values (in volts, mA, etc.) are converted to \% in order that the application references can be adapted.

## Minimum and maximum input values:

The minimum value corresponds to a reference of $0 \%$ and the maximum value to a reference of $100 \%$. The minimum value may be greater than the maximum value:



## Range (output values): For analog inputs only

This parameter is used to set the reference range to $[0 \% \rightarrow 100 \%$ ] or $[-100 \% \rightarrow+100 \%]$ in order to obtain a bipolar output from a unipolar input.


## Code

Name/Description
Adjustment range
Factory setting

## [Reference template]

b 5d[Standard] (bSd)

[Deadband 0\%] (bnSo)

[Pedestal] (bLS)

[Deadband] (bnS)
Frequency


This function is the same as [Standard] (bSd), with the exception that at zero reference, the frequency $=0$

At zero reference the frequency $=$ LSP

At zero reference the frequency $=0$

This parameter defines how the speed reference is taken into account, regardless of the reference channel. In the case of the PID regulator, this is the PID output reference.
The limits are set by the [Low speed] (LSP) and [High speed] (HSP) parameters, page xx

## [1.5 - INPUTS / OUTPUTS CFG] (I-O-)

## Delinearization: For analog inputs only

The input can be delinearized by configuring an intermediate point on the input/output curve of this input:
For range $0 \rightarrow 100 \%$


Note: For [Interm. point X], 0\% corresponds to [Min value] and 100\% to [Max value]
For range $-100 \% \rightarrow 100 \%$
Reference


| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| A 11 - | - [Al1 CONFIGURATION] |  |  |
| ( I IA | [Al1 assignment] <br> Read-only parameter, cannot be configured. <br> It displays all the functions associated with input Al1 in order to check, for example, for compatibility problems. |  |  |
| A I It <br> 1ロU | $\square$ [Al1 type] <br> Read-only parameter, cannot be configured. [Voltage] (10U): Voltage input |  | [Voltage] (10U) |
| U IL I | $\square[$ Al1 min value] | 0 to 10.0 V | 0 V |
| U IH I | $\square$ [Al1 max value] | 0 to 10.0 V | 10.0 V |
| A I IF | $\square$ [Al1 filter] <br> Interference filtering. | 0 to 10.00 s | 0 s |
| F I IE | $\square$ [Al1 Interm. point X] <br> Input delinearization point coordinate. <br> - 0\% corresponds to [AI1 min value] (UIL1). <br> - $100 \%$ corresponds to [AI1 max value] (UIH1). | $0 \text { to } 100 \%$ | 0\% |
| H 115 | $\square$ [Al1 Interm. point Y] <br> Output delinearization point coordinate (frequency reference). | $0 \text { to } 100 \%$ | 0\% |


| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| －1－ | ［A12 CONFIGURATION］ |  |  |
| （12月 | ［Al2 assignment］ <br> Read－only parameter，cannot be configured． <br> It displays all the functions associated with input AI2 in order to check，for example，for compatibility problems． |  |  |
| $\begin{aligned} & \text { A I己t } \\ & \text { IロU } \\ & \square \text { A } \end{aligned}$ | $\square$［Al2 type］ ［Voltage］（10U）：Voltage input ［Current］（0 A）：Current input |  | ［Current］（0 A） |
| 「r L | ［Al2 min．value］ <br> The parameter can be accessed if［AI2 Type］（Al2t）＝［Curr | 0 to 20.0 mA <br> ent］（0 A） | $4.0 \mathrm{~mA}$ |
| ［rH己 | ［Al2 max value］ <br> The parameter can be accessed if［AI2 Type］（AI2t）＝［Curr | 0 to 20.0 mA <br> ent］（0 A） | 20.0 mA |
| UIL己 | ［Al2 min．value］ <br> The parameter can be accessed if［AI2 Type］（AI2t）$=$［Volta | $\begin{aligned} & \hline 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] (10U) } \end{aligned}$ | 0 V |
| リノH己 | ［Al2 max value］ <br> The parameter can be accessed if［AI2 Type］（AI2t）$=$［Volta | $\begin{aligned} & 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] (10U) } \end{aligned}$ | 10.0 V |
| －I JF | Interference filtering． | $0 \text { to } 10.00 \mathrm{~s}$ | 0 s |
| $\begin{aligned} & \text { A I 己L } \\ & \text { PロS } \\ & n E L \end{aligned}$ | ［Al2 range］ ［0－－＞100\％］（POS）：One－way input ［－100\％－－＞＋100\％］（nEG）：Two－way input <br> Example：On a $0 / 10 \mathrm{~V}$ input <br> － 0 V corresponds to reference $-100 \%$ <br> － 5 V corresponds to reference $0 \%$ <br> － 10 V corresponds to reference $+100 \%$ |  | [0 --> 100\%] (POS) |
| （12E | ［AI2 Interm．point X］ <br> Input delinearization point coordinate． <br> － $0 \%$ corresponds to［Min value］if the range is $0 \rightarrow 100 \%$ ． <br> － $0 \%$ corresponds to $\qquad$ <br> － $100 \%$ corresponds to［Max value］． | 0 to 100\％ <br> ［Min value］if the ran | $0 \%$ $s-100 \% \rightarrow+100 \%$ |
| 月125 | ［AI2 Interm．point Y］ <br> Output delinearization point coordinate（frequency reference）． | 0 to 100\％ <br> e）． | 0\％ |



| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| A 14- | [AI4 CONFIGURATION] <br> Can be accessed if an option card has been inserted |  |  |
| A 14月 | [Al4 assignment] <br> Read-only parameter, cannot be configured. <br> It displays all the functions associated with input AI2 in order to check, for example, for compatibility problems. |  |  |
| $\begin{aligned} & \text { A } 14 t \\ & 1 \square U \\ & \square \text { A } \end{aligned}$ | - [AI4 type] [Voltage] (10U): Voltage input [Current] (0 A): Current input |  | [Current] (0 A) |
| [rL4 | $\square$ [AI4 min. value] <br> The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Curre | 0 to 20.0 mA <br> ent] (0 A) | 4.0 mA |
| [rH4 | $\square$ [AI4 max value] <br> The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Curre | 0 to 20.0 mA <br> ent] (0 A) | $20.0 \mathrm{~mA}$ |
| UIL | [Al4 min. value] <br> The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Voltage | $\frac{0 \text { to } 10.0 \mathrm{~V}}{\text { age] }(10 \mathrm{U})}$ | 0 V |
| U1H4 | [Al4 max value] <br> The parameter can be accessed if [AI4 Type] (AI4t) $=$ [Volta | $\begin{aligned} & 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] (10U) } \end{aligned}$ | 10.0 V |
| A $14 F$ | [Al4 filter] <br> Interference filtering. | 0 to 10.00 s | 0 s |
| $\begin{aligned} & \text { A } 14 L \\ & \text { PロS } \\ & \cap E L \end{aligned}$ | [Al4 range] [0 --> 100\%] (POS): One-way input [-100\% --> +100\%] (nEG): Two-way input Example: On a $0 / 10 \mathrm{~V}$ input <br> - 0 V corresponds to reference $-100 \%$ <br> - 5 V corresponds to reference $0 \%$ <br> - 10 V corresponds to reference $+100 \%$ |  | [0 --> 100\%] (POS) |
| A 14E | [AI4 Interm. X] <br> Input delinearization point coordinate. <br> - $0 \%$ corresponds to [Min value] if the range is $0 \rightarrow 100 \%$. <br> - $0 \%$ corresponds to [Max value] - [Min value] <br> - $100 \%$ corresponds to [Max value]. $\qquad$ | 0 to 100\% <br> Min value] if the rang | 0\% $-100 \% \rightarrow+100 \%$ |
| A 145 | [AI4 Interm.Y] <br> Output delinearization point coordinate (frequency reference) | 0 to 100\% <br> e). | 0\% |


| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| P 1 \% - | [PULSE IN CONFIGURATION] <br> Can be accessed if an option card has been inserted |  |  |
| P IA | [Assignment] <br> Read-only parameter, cannot be configured. <br> It displays all the functions associated with the Pulse input in order to check, for example, for compatibility problems. |  |  |
| P IL | $\square$ [RP min value] <br> Frequency corresponding to the minimum speed | 0 to 3000 (x 10 Hz ) | 0 |
| PFr | $\square$ [RP max value] <br> Frequency corresponding to the maximum speed | 0 to 3000 ( $\times 10 \mathrm{~Hz}$ ) | 0 |
| PF I | $\square$ [RP filter] Interference filtering. | 0 to 1000 ms | 0 |

## [1.5 - INPUTS / OUTPUTS CFG] (I-O-)

## Configuration of the encoder input serving as a reference

## Minimum and maximum values (input values):

The minimum value corresponds to a minimum reference of $0 \%$ and the maximum value to a maximum reference of $100 \%$. The minimum value may be greater than the maximum value. It may also be negative.


A reference can be obtained at zero frequency by assigning a negative value to the minimum value.

The encoder parameters can only be accessed if the encoder card has been inserted and the available selections will depend on the type of encoder card used．The encoder configuration can also be accessed in the［1．4－MOTOR CONTROL］（drC－）menu．

\begin{tabular}{|c|c|c|}
\hline Code \& Name／Description \(\quad\) Adjustment range \& Factory setting \\
\hline PL \& \multicolumn{2}{|l|}{\begin{tabular}{l}
［ENCODER CONFIGURATION］ \\
The encoder parameters can only be accessed if the encoder card has been inserted and the available selections will depend on the type of encoder card used．
\end{tabular}} \\
\hline \(E \cap 5\)

A月ロロ
月女

A \& \multicolumn{2}{|l|}{| ［Encoder signals］ |
| :--- |
| The parameter can be accessed if an encoder card has been inserted． To be configured in accordance with the type of encoder used． ［AABB］（AAbb）：For signals A，A－，B，B－． ［AB］（Ab）：For signals A，B． ［A］（A）：For signal A． |} <br>

\hline $P[$ \& \multicolumn{2}{|l|}{| Number of pulses per revolution． |
| :--- |
| The parameter can be accessed if an encoder card has been inserted． |} <br>


\hline  \& | $\square$［Encoder check］ |
| :--- |
| Check encoder feedback．See procedure page xx． |
| The parameter can be accessed if an encoder card has been i a value other than［PGR－＞NotDef］（PGr）． ［No］（nO）：Check not performed． ［Yes］（YES）：Initiates the check． |
| 4 |
| This selection causes the motor to start to turn． ［Done］（dOnE）：Check performed successfully． |
| The check procedure checks： |
| －The direction of rotation of the encoder／motor（ENF3 fault） |
| －The presence of signals（wiring continuity，ENF2 fault） |
| －The number of pulses／revolution（ENF1 fault） |
| If a fault is detected，the drive locks in ENFx fault mode． | \& use］（EnU）i <br>


\hline  \& \multirow[t]{2}{*}{| $\square$［Encoder use］ |
| :--- |
| The parameter can be accessed if an encoder card has been inserted． ［No］（nO）：Function inactive，In this case，the other parameters cannot be acces ［spd sec．Fdk］（SEC）：The encoder provides speed feedback for monitoring ［spd regul fdk］（rEG）：The encoder provides speed feedback for regulation and configuration is automatic if the drive has been configured for closed－loop operat by this type of operation． ［PGR－＞NotDef］（PGr）：The encoder serves as a reference． |
| ［Reference type］ |
| The parameter can be accessed if［Encoder use］（EnU）$=$［PGR－＞NotDef］（PGr）． ［Encoder］（EnC）：Use of an encoder． ［Freq．gen．］（PtG）：Use of a frequency generator． |} \& | $[\mathrm{No}](\mathrm{nO})$ |
| :--- |
| d． |
| ． |
| monitoring．This and is only suppo | <br>

\hline $P G A$

$E \cap L$
$P \in \square$ \& \& Encoder］（EnC） <br>
\hline E IL \& \multicolumn{2}{|l|}{The parameter can be accessed if［Encoder use］（EnU）＝［PTG－＞NotDef］（PGr）and if［ ］（PGA）＝［ ］（PtG）． Frequency corresponding to the minimum speed} <br>
\hline E Fr \& \multicolumn{2}{|l|}{The parameter can be accessed if［Encoder use］（EnU）$=[$ PTG－＞NotDef］（PGr）and if［ ］（PGA）$=[$ ］（PtG）． Frequency corresponding to the maximum speed} <br>

\hline EFI \& | $\square$［Freq．signal filter］ | 0 to 1000 ms |
| :--- | :--- |
| The parameter can be accessed if［Encoder use］（EnU） <br> Interference filtering． |  |
| ［PTG－＞NotDef］（PGr） |  | \& if［ ］（PGA）＝［ ］ <br>

\hline
\end{tabular}




| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| r 4 - | [R4 CONFIGURATION] <br> Can be accessed if an option card has been inserted |
| $\text { r } 4$ <br> bL | [R4 Assignment] <br> Identical to R1 (see page 77), plus: <br> [Brk control] (bLC): Brake contactor control, for information as this selection can only be configured in the [APPLICATION FUNCT.] (Fun-) menu |
| r4d | [R4 Delay time] <br> For the assignments of [Brk control] (bLC) and [Line cont.] (LCC), the delay time cannot be set above 0 . The change in state only takes effect once the configured time has elapsed, when the information becomes true. |
| $r 450$ | [R4 Active at] <br> Configuration of the operating logic: [0]: State 0 when the information is true [1]: State 1 when the information is true <br> For the assignments of [Brk control] (bLC) and [Line cont.] (LCC), state 1 cannot be modified. |
| r 4 H | [R4 Holding time] <br> For the assignments of [Brk control] (bLC) and [Line cont.] (LCC), the holding time cannot be set above 0 . The change in state only takes effect once the configured time has elapsed, when the information becomes false. |


| Code | Name／Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| Lロ 1－ | ［LO1 CONFIGURATION］ <br> Can be accessed if an option card has been inserted |
| $\begin{gathered} \text { LロI } \\ \quad \text { bLL } \end{gathered}$ | ［LO1 assignment］ <br> Identical to R1（see page 77），plus： <br> ［Brk control］（bLC）：Brake contactor control，for information as this selection can only be configured in the［APPLICATION FUNCT．］（Fun－）menu |
| LロId | ［LO1 delay time］ <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），the delay time cannot be set above 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes true． |
| LDI5 | ［LO1 active at］ <br> Configuration of the operating logic： ［0］：State 0 when the information is true ［1］：State 1 when the information is true <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），state 1 cannot be modified． |
| L I IH | ［LO1 holding time］ <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），the holding time cannot be set above 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes false． |
| Lロ己－ | ■［LO2 CONFIGURATION］ <br> Can be accessed if an option card has been inserted |
| Lロコ bL［ | ［LO2 assignment］ <br> Identical to R1（see page 77），plus： <br> ［Brk control］（bLC）：Brake contactor control，for information as this selection can only be configured in the［APPLICATION FUNCT．］（Fun－）menu |
| Lロㄹd | ［LO2 delay time］ <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），the delay time cannot be set above 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes true． |
| $\text { Lロ } 25$ | ［LO2 active at］ <br> Configuration of the operating logic： ［0］：State 0 when the information is true ［1］：State 1 when the information is true <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），state 1 cannot be modified． |
| L ا 己 H | ［LO2 holding time］ <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），the holding time cannot be set above 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes false． |


| Code | Name／Description ${ }^{\text {a }}$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| Lロヨ－ | ［LO3 CONFIGURATION］ <br> Can be accessed if an option card has been inserted |
| Lロヨ <br> bL［ | ［LO3 assignment］ <br> Identical to R1（see page 77），plus： <br> ［Brk control］（bLC）：Brake contactor control，for information as this selection can only be configured in the［APPLICATION FUNCT．］（Fun－）menu |
| Lロヨd | ［LO3 delay time］ <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），the delay time cannot be set above 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes true． |
| $\text { Lロヨ } 5$ | ［LO3 active at］ <br> Configuration of the operating logic： ［0］：State 0 when the information is true ［1］：State 1 when the information is true <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），state 1 cannot be modified． |
| LロヨH | ［LO3 holding time］ <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），the holding time cannot be set above 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes false． |
| L प 4－ | ■［LO4 CONFIGURATION］ <br> Can be accessed if an option card has been inserted |
| Lロ4 bL［ | ［LO4 assignment］ <br> Identical to R1（see page 77），plus： ［Brk control］（bLC）：Brake contactor control，for information as this selection can only be configured in the［APPLICATION FUNCT．］（Fun－）menu |
| Lロ4d | ［LO4 delay time］ <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），the delay time cannot be set above 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes true． |
| Lロ45 | ［LO4 active at］ <br> Configuration of the operating logic： ［0］：State 0 when the information is true ［1］：State 1 when the information is true <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），state 1 cannot be modified． |
| L प 4 H | ［LO4 holding time］ <br> For the assignments of［Brk control］（bLC）and［Line cont．］（LCC），the holding time cannot be set above 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes false． |


| Code | Name／Description $\quad$ Adjustment range ${ }^{\text {Factory setting }}$ |
| :---: | :---: |
|  | ［LIST OF ALARMS］ |
| म［ I | ［Alarm Grp 1］ <br> Selection to be made in the following list： ［PTC1 alarm］（P1A）：Probe alarm motor 1 ［PTC2 alarm］（P2A）：Probe alarm motor 2 ［PTC3 alarm］（PLA）：Probe alarm motor 3 ［I attained］（CtA）：Current threshold reached ［Freq．attain．］（FtA）：Frequency attained <br> $\square$［Freq．ref．att．］（SrA）：Frequency reference attained <br> $\square$［Ext．fault al］（EFA）：External fault alarm <br> $\square$［Th．ATV att．］（tAd）：Drive thermal state attained <br> $\square$［Th．mot．att．］（tSA）：Motor thermal state 1 attained <br> $\square$［Th．mot2 att］（tSA2）：Motor thermal state 2 attained <br> $\square$［Th．mot3 att］（tSA3）：Motor thermal state 3 attained <br> $\square$［Underv．al］（USA）：Undervoltage alarm <br> －［prevent．＜U］（UPA）：Undervoltage prevention <br> $\square$［HSP attain．］（FLA）：High speed attained <br> $\square$［slipping al．］（AnA）：Slipping alarm <br> $\square$［AI．${ }^{\circ} \mathrm{C}$ drv．］（tHA）：IGBT alarm <br> $\square$［Load mvt al］（bSA）：Braking speed alarm <br> $\square$［Brk cont．al］（bCA）：Brake contact alarm <br> $\square$［PID error al］（PEE）：PID error alarm <br> $\square$［PID fdbk al．］（PFA）：PID feedback alarm <br> $\square$［4－20 mA loss］（APL）：Alarm indicating absence of 4－20 mA signal <br> $\square$［Lim T／l att．］（SSA）：Torque limit alarm <br> $\square$［Trq．reg．al．］（rtA）： <br> $\square$［TS4］（tS4）： <br> See the selection procedure on page 23 for the integrated terminal and page 15 for the graphic display terminal． |
|  | ［Alarm Grp 2］ <br> Identical to［Alarm Grp 1］（AG1） |
| ค■ | ［Alarm Grp 3］ <br> Identical to［Alarm Grp 1］（AG1） |

## [1.5 - INPUTS / OUTPUTS CFG] (I-O-)

## Configuration of analog outputs

## Minimum and maximum values (output values):

The minimum output value, in volts or mA, corresponds to the lower limit of the assigned parameter and the maximum value to its upper limit. The minimum value may be greater than the maximum value:


Outputs AO2 and AO3 configured as bipolar outputs:
The [min value] (UOLx) and [max value] ( UOHx ) parameters are absolute values, although they function symmetrically. In the case of bipolar outputs, always set the maximum value higher than the minimum value.




## Command and reference channels

Run commands (forward, reverse, stop, etc.) and references can be sent using the following channels:

| Command | Reference |
| :--- | :--- |
| - Terminals: Logic inputs LI | - Terminals: Analog inputs AI, frequency input, encoder |
| - Graphic display terminal (RJ45 socket) | - Graphic display terminal (RJ45 socket) |
| - Modbus | - Modbus |
| - CANopen | - CANopen |
| - Communication cards | - Communication card |
| - Programmable card | - Programmable card |
|  | - +/- speed via the terminals |
|  | - +/-speed via the graphic display terminal |

The Altivar 71 supports various command and reference combinations:

- ATV58 type: To replace an Altivar 58. See the Substitution Guide.
- Not separate mode: Command and reference are sent via the same channel.
- Separate mode: Command and reference may be sent via different channels.
- I/O mode: Command and reference may be sent via different channels.

Commands may be sent via the logic inputs on the terminals or via the communication bus. When commands are sent via a bus, they are available on a word, which behaves as virtual terminals containing only logic inputs.
Application functions can be assigned to the bits in this word. One bit may contain several assignments.
In other command modes, control via the bus takes place in accordance with standard DSP402 (see the Communication Variables Manual) with 5 bits only that can be freely assigned.

Stop commands from the terminals remain active even if the terminals are not the active command channel.

## Reference channel for not separate mode (SIM), separate mode (SEP) and I/O mode, PID not configured



## Parameter:

The black square represents
the factory setting assignment

## References

Fr1, SA2, SA3, dA2, dA3, MA2, MA3:

- terminals, graphic display terminal, Modbus, CANopen, communication cards, programmable card


## Fr1b, for SEP and I/O:

- terminals, graphic display terminal, Modbus, CANopen, communication cards, programmable card


## Fr1b, for SIM:

- terminals, only accessible if Fr1 = terminals

Fr2:

- terminals, graphic display terminal, Modbus, CANopen, communication cards, programmable card, and +/-speed

Note: [Ref.1B channel] (Fr1b) and [Ref.1B switching] ( rCb ) must be configured in the [APPLICATION FUNCT.] (Fun-) menu.

Reference channel for not separate mode (SIM), separate mode (SEP) and I/O mode, PID configured with PID references at the terminals


## References

Fr1, Fr1b, SA2, SA3, dA2, dA3, MA2, MA3:

- terminals

Fr2:

- terminals, graphic display terminal, Modbus, CANopen, communication cards, programmable card, and +/- speed
(1) Ramps not active if the PID function is active in automatic mode.

Note: [Ref.1B channel] (Fr1b) and [Ref.1B switching] (rCb) must be configured in the [APPLICATION FUNCT.] (Fun-) menu.

Reference channel for separate mode (SEP), not separate mode (SIM) and I/O mode, PID configured with PID references online


Parameter:
The black square represents
the factory setting assignment

## References

Fr1:

- graphic display terminal, Modbus, CANopen, communication cards, programmable card

Fr1b, for SEP and I/O:

- graphic display terminal, Modbus, CANopen, communication cards, programmable card


## Fr1b, for SIM:

- inaccessible

Fr2:

- terminals, graphic display terminal, Modbus, CANopen, communication cards, programmable card, and $+/$ - speed
(1) Ramps not active if the PID function is active in automatic mode.

Note: [Ref.1B channel] (Fr1b) and [Ref.1B switching] (rCb) must be configured in the [APPLICATION FUNCT.] (Fun-) menu.

## Command channel for not separate mode (SIM)

## Combined reference and command

Parameters Fr1, Fr2, rFC, FLO and FLOC are common to reference and command. The command channel is therefore determined by the reference channel.
Example: If the reference Fr1 = Al1 (analog input at the terminals), control is via LI (logic input at the terminals).


Key:


Parameter:
The black square represents the factory setting assignment

## Command channel for separate mode (SEP)

Separate mode (separate reference and command)
Parameters FLO and FLOC are common to reference and command.
Example: If the reference is in forced local mode via Al1 (analog input at the terminals), control in forced local mode is via LI (logic input at the terminals).
The command channels Cd1 and Cd2 are independent of the reference channels Fr1, Fr1b and Fr2.


Key:


Parameter:
The black square represents
the factory setting assignment

## Commands

Cd1, Cd2:

- terminals, graphic display terminal, Modbus, CANopen, communication cards, programmable card


## Command channel for I/O mode

Separate mode (separate reference and command)
Parameters FLO and FLOC are common to reference and command.
Example: If the reference is in forced local mode via Al1 (analog input at the terminals), control in forced local mode is via LI (logic input at the terminals).
The command channels Cd1 and Cd2 are independent of the reference channels Fr1, Fr1b and Fr2.


Key:


Parameter:
The black square represents
the factory setting assignment

## Commands

Cd1, Cd2:

- terminals, graphic display terminal, Modbus, CANopen, communication cards, programmable card


## Command channel for [I/O mode]

## Selection of a command channel:

A command or an action can be assigned:

- To a fixed channel by selecting an LI input or a Cxxx bit:
- By selecting e.g., LI3, this action will always be triggered by LI3 regardless of which command channel is switched.
- By selecting e.g., C214, this action will always be triggered by CANopen with bit C214 regardless of which command channel is switched.
- Can be switched by selecting a switchable bit CDxx:
- By selecting e.g., CD11, this action will be triggered by:

LI12 if the terminals channel is active
C111 if the Modbus channel is active
C211 if the CANopen channel is active
C311 if the communication channel card is active
C411 if the programmable card channel is active

## Note:

- CD14 and CD15 can only be used for switching between 2 networks. They do not have equivalent logic inputs.
- The command for switching the command channel cannot be switched by the latter.

| Terminals | Modbus | CANopen | Communication card | Programmable card | Internal bit, can be switched |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LI1 | C100 | C200 | C300 | C400 | CDOO |
| LI2 | C101 | C201 | C301 | C401 | CD01 |
| LI3 | C102 | C202 | C302 | C402 | CD02 |
| LI4 | C103 | C203 | C303 | C403 | CD03 |
| LI5 | C104 | C204 | C304 | C404 | CD04 |
| LI6 | C105 | C205 | C305 | C405 | CD05 |
| LI7 | C106 | C206 | C306 | C406 | CD06 |
| LI8 | C107 | C207 | C307 | C407 | CD07 |
| LI9 | C108 | C208 | C308 | C408 | CD08 |
| LI10 | C109 | C209 | C309 | C409 | CD09 |
| LI11 | C110 | C210 | C310 | C410 | CD10 |
| LI12 | C111 | C211 | C311 | C411 | CD11 |
| LI13 | C112 | C212 | C312 | C412 | CD12 |
| LI14 | C113 | C213 | C313 | C413 | CD13 |
| - | C114 | C214 | C314 | C414 | CD14 |
| - | C115 | C215 | C315 | C415 | CD15 |

## [1.6-COMMAND] (CtL-)

The following elements are available for every command or function that can be assigned to a logic input or a command bit:

| $\begin{gathered} \text { [LI1] (LII) } \\ \text { to } \\ {[\text { LI6] (LI6) }} \end{gathered}$ |  |
| :---: | :---: |
| $\begin{gathered} \text { [LI7] (LI7) } \\ \text { to } \\ \text { [LI10] (LI10) } \end{gathered}$ | If logic I/O card present |
| $\begin{gathered} \text { [LI11] (LI11) } \\ \text { to } \\ \text { [LI4] (LI14) } \end{gathered}$ | If I/O extension card present |
| $\begin{gathered} {[\mathrm{C} 100] \text { (C100) }} \\ \text { to } \\ {[\mathrm{C} 110](\mathrm{C} 110)} \end{gathered}$ | With Modbus in I/O mode |
| $\begin{gathered} {[\mathrm{C} 111](\mathrm{C} 111)} \\ \text { to } \\ {[\mathrm{C} 115](\mathrm{C} 115)} \end{gathered}$ | With Modbus regardless of the mode |
| $\begin{gathered} {[\mathrm{C} 200](\mathrm{C} 200)} \\ \text { to } \\ {[\mathrm{C} 210](\mathrm{C} 210)} \end{gathered}$ | With CANopen in I/O mode |
| $\begin{gathered} {[\mathrm{C} 211](\mathrm{C} 211)} \\ \text { to } \\ {[\mathrm{C} 215](\mathrm{C} 215)} \end{gathered}$ | With CANopen regardless of the mode |
| $\begin{gathered} {[\mathrm{C} 300](\mathrm{C} 300)} \\ \text { to } \\ {[\mathrm{C} 310](\mathrm{C} 310)} \end{gathered}$ | With a communication card in I/O mode |
| $\begin{gathered} {[\mathrm{C} 311](\mathrm{C} 311)} \\ \text { to } \\ {[\mathrm{C} 315](\mathrm{C} 315)} \end{gathered}$ | With a communication card regardless of the mode |
| $\begin{gathered} {[\mathrm{C} 400](\mathrm{C} 400)} \\ \text { to } \\ {[\mathrm{C} 410](\mathrm{C} 410)} \end{gathered}$ | With programmable card in I/O mode |
| $\begin{gathered} {[\mathrm{C} 411](\mathrm{C} 411)} \\ \text { to } \\ {[\mathrm{C} 415](\mathrm{C} 415)} \end{gathered}$ | With programmable card regardless of the mode |
| $\begin{gathered} \text { [CD00] (Cd00) } \\ \text { to } \\ {[\text { [CD13] (Cd13) }} \end{gathered}$ | In I/O mode can be switched with possible logic inputs |
| $\begin{gathered} {[C D 14](C d 14)} \\ \text { to } \\ {[C D 15](C d 15)} \end{gathered}$ | In I/O mode can be switched without logic inputs |


| Code | Name／Description ${ }^{\text {a }}$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| $\overline{F r} I$ <br> A 1 । <br> म 1 己 <br> ค $1 \exists$ <br> A 14 <br> P I <br> PG <br> L［ $[$ <br> П』ь <br> ［月n <br> nEt <br> APP | $\square$［Ref． 1 channel］ ［Al1］（Al1）：Analog input ［AI2］（AI2）：Analog input ［AI3］（AI3）：Analog input，if extension card present ［AI4］（A14）：Analog input，if extension card present ［Pulse input］（PI）：Frequency input，if card present ［Encoder ref．］（PG）：Encoder input，if card present ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Modbus ［CANopen］（CAn）：CANopen ［Com．card］（ nEt ）：Communication card（if present） ［Prog．card］（APP）：Programmable card（if present） | ［AI1］（Al1） |
|  | ［RV Inhibition］ ［No］（nO） ［Yes］（YES） <br> Inhibition of movement in reverse direction，does not apply to direction requests sen <br> －Reverse direction requests sent by logic inputs are taken into account． <br> －Reverse direction requests sent by the graphic display terminal are not taken in <br> －Reverse direction requests sent by the line are not taken into account． <br> －Any inverse speed reference originating from the PID，summing input，etc．，is in reference． | ［ $\mathrm{No} \mathrm{J}(\mathrm{nO})$ <br> y logic inputs． <br> account． <br> preted as a zero |
| $\begin{aligned} \text { PSt } \\ \text { n } \\ \text { YE } \end{aligned}$ | ［Stop Key priority］ ［ No ］（nO） ［Yes］（YES）：Gives priority to the STOP key on the graphic display terminal regard channel enabled． <br> ENT must be pressed and held down（2 s ）in order for any change in the assignment of to be taken into account． <br> This stop is a freewheel stop if the active command channel is not the graphic display command channel is the graphic display terminal，the stop will be performed in acco ［Type of stop］（Stt）on page 107. | ［Yes］（YES） <br> s of the command <br> Stop Key priority］（PSt） <br> terminal．If the active ance with the setting in |
| $\begin{array}{cc} \text { CHCF } \\ 5 & 10 \\ 5 & E \\ 10 \\ 5 & E \end{array}$ | ［Channel config．］ ［Not separ．］（SIM）：Combined reference and command ［Separate］（SEP）：Separate reference and command ［I／O mode］（IO）：I／O mode ［8 serie］（SE8）：ATV58 interchangeability（see Substitution Guide）． | Not separ．］（SIM） |
| $\text { ᄃ } 55$ <br> ［d $[d z$ $L 11$ | ［Cmd Switching］ <br> Parameter can be accessed if［Channel config．］（CHCF）$=$［Separate］（SEP）or［／／O ［Cmd Channel 1］（Cd1）：［Cmd channel 1］（Cd1）active（no switching） ［Cmd Channel 2］（Cd2）：［Cmd Channel 2］（Cd2）active（no switching） ［LII］（LII） ［．．．］（．．．）：See the assignment conditions on page 94. <br> If the state of the input or bit assigned is at 0 ，channel［Cmd Channel 1］（Cd1）is active If the state of the input or bit assigned is at 1 ，channel［Cmd Channel 2］（Cd2）is active | ［Cmd Channel 1］ <br> （Cd1） <br> de］（IO） |


| Code | Name／Description ${ }^{\text {a }}$（ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| ［d 1 <br> tEr <br> L［ $[$ <br> Пыь <br> ［月n <br> nEt <br> APP | ［Cmd Channel 1］ ［Terminals］（tEr）：Terminals ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Modbus ［CANopen］（CAn）：CANopen ［Com．card］（nEt）：Communication card（if present） ［Prog．card］（APP）：Programmable card（if present） | ［Terminals］（tEr） |
| ［d己 <br> tEr <br> L［［ <br> П』ロ <br> ［ 月 п <br> nEt <br> APP | $\square$［Cmd Channel 2］ ［Terminals］（tEr）：Terminals ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Modbus ［CANopen］（CAn）：CANopen ［Com．card］（ nEt ）：Communication card（if present） ［Prog．card］（APP）：Programmable card（if present） <br> The parameter can be accessed if［Channel config．］（CHCF）＝［Separate］（SEP）or［I／O | ［Modbus］（Mdb） <br> mode］（IO）． |
| $\begin{array}{cl} r F & \\ F_{r} & 1 \\ F r & 1 \\ & L \\ & 1 \end{array}$ | ［Ref2．Switching］ ［Ref． 1 channel］（Fr1）：no switching ［Ref． 2 channel］（Fr2）：no switching ［LII］（LII） ［．．．］（．．．）：See the assignment conditions on page 94. <br> If the state of the input or bit assigned is at 0 ，channel［Ref． 1 channel］（Fr1）is active． If the state of the input or bit assigned is at 1 ，channel［Ref． 2 channel］（Fr2）is active． | ［Ref． 1 channel（Fr1） |
| Fre <br> A 1 I <br> －1 己 <br> A 1 ヨ <br> A 14 <br> P I <br> $P[$ <br> UPd <br> L［［ <br> П』ь <br> ［ 月 п <br> nEt <br> APP | ［Ref． 2 channel］ <br> The parameter can be accessed if［Ref2．Switching］（rFC）is set to a value other than ［AI1］（Al1）：Analog input ［AI2］（Al2）：Analog input ［AI3］（AI3）：Analog input，if extension card present ［AI4］（AI4）：Analog input，if extension card present ［Pulse input］（PI）：Frequency input，if card present ［Encoder ref．］（PG）：Encoder input，if card present ［＋／－Speed］（UPd）：＋／－Speed command ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Modbus ［CANopen］（CAn）：CANopen ［Com．card］（ nEt ）：Communication card（if present） ［Prog．card］（APP）：Programmable card（if present） | AI2 <br> Ref． 1 channel］（Fr1）． |
|  | ［Copy channel 1－＞2］ <br> Copying is only performed from channel 1 to channel 2. <br> The parameter can be accessed if［Channel config．］（CHCF）is set to a value other th ［ No ］（nO）：No copy ［Reference］（SP）：Copy reference ［Command］（Cd）：Copy command ［Cmd＋ref．］（ALL）：Copy command and reference <br> －If channel 2 is controlled via the terminals，the channel 1 command is not copied <br> －If channel 2 reference is set via AI1，AI2，AI3，AI4，the encoder input or the frequ reference is not copied． <br> －The reference copied is FrH（before ramp）unless the channel 2 reference is set v the reference copied is rFr （after ramp）． <br> 4 <br> Copying the command and／or reference may change the direction of rota | ［ $\mathrm{No} \mathrm{o}(\mathrm{nO})$ <br> n［8 serie］（SE8） <br> ncy input，channel 1 <br> ＋／－speed．In this case， <br> on． |

As the graphic display terminal may be selected as the command and/or reference channel, its action modes can be configured. The following parameters can only be accessed on the graphic display terminal, but not on the integrated terminal.

## Notes:

- The terminal command/reference is only active if the command and/or reference channels from the display terminal are active with the exception of [HMI command] (LCC) (command via the display terminal), which takes priority over these channels. Press [HMI command] (LCC) (command via the display terminal) again to revert control to the selected channel.
- Command and reference via the display terminal are impossible if it is connected to more than one drive
- JOG, preset speed and $+/$ - speed functions can only be accessed if [Channel config.] (CHCF) $=$ [Not separ.] (SIM).
- Preset PID reference functions can only be accessed if [Channel config.] (CHCF) = [Not separ.] (SIM) or [Separate] (SEP)



## [1.7 - APPLICATION FUNCT.] (FUn-)

$\triangle$Function compatibility
The choice of application functions may be limited by the number of I/O and by the fact that some functions are incompatible with one another. Functions that are not listed in the table below are fully compatible. If there is an incompatibility between functions, the first function configured will prevent the remainder being configured.

Each of the functions on the following pages can be assigned to one of the inputs or outputs.
A single input can activate several functions at the same time (reverse and $2^{\text {nd }}$ ramp, for example). The user must therefore ensure that these functions can be used at the same time.

Before assigning a command, a reference or a function to an input or output, the user must make sure that this input or output has not already been assigned and that another input or output has not been assigned to an incompatible or undesirable function. The drive factory setting or macro configurations automatically configure functions, which may prevent these functions being assigned. It may be necessary to unconfigure one or more functions in order to be able to enable another. Check the compatibility table below.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ref. operation (page 103) |  |  |  | $\uparrow$ | - |  | $\uparrow$ |  |  |  |  |  |  |  |  | $\bullet$ (1) |  |  |
| +/- speed (3) (page 115) |  |  |  |  |  | $\bullet$ | $\bullet$ |  |  |  |  |  |  |  |  | $\bullet$ (1) |  |  |
| Management of limit switches (page 121) |  |  |  |  | $\bullet$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Preset speeds (page 112) | $\leftarrow$ |  |  |  |  |  | $\uparrow$ |  |  |  |  |  |  |  |  | $\bullet$ (1) |  |  |
| PID regulator (page 139) | $\bullet$ |  | $\bullet$ |  |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |  |  | $\bullet$ | $\bullet$ | $\bullet$ (1) | $\bullet$ | $\bullet$ |
| Traverse control (page 168) |  | $\bullet$ |  |  | $\bullet$ |  | - |  |  |  |  |  |  | $\bullet$ | - | $\bullet$ (1) |  |  |
| JOG operation (page 110) | $\leftarrow$ | $\bullet$ |  | $\leftarrow$ | $\bullet$ | $\bullet$ |  | $\bullet$ |  |  |  |  |  | $\bullet$ | - | $\bullet$ (1) |  |  |
| Brake logic control (page 126) |  |  |  |  | $\bullet$ |  | $\bullet$ |  | - | $\bullet$ | $\bullet$ |  |  |  |  | $\bullet$ (1) |  |  |
| Catch on the fly (page 174) |  |  |  |  |  |  |  | $\bullet$ |  |  |  |  |  |  |  | $\bullet$ (1) |  |  |
| Output contactor (page 152) |  |  |  |  |  |  |  | $\bullet$ |  |  |  |  |  |  |  |  |  |  |
| DC injection stop (page 107) |  |  |  |  |  |  |  | $\bullet$ |  |  |  | $\bullet$ (2) | $\uparrow$ |  |  |  |  |  |
| Fast stop (page 107) |  |  |  |  |  |  |  |  |  |  | $\bullet(2)$ |  | $\uparrow$ |  |  |  |  |  |
| Freewheel stop (page 107) |  |  |  |  |  |  |  |  |  |  | $\leftarrow$ | $\leftarrow$ |  |  |  |  |  |  |
| +/- speed around a reference (page 117) |  |  |  |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |  |  |  |  |  | $\bullet$ (1) |  |  |
| High speed hoisting (page 134) |  |  |  |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |  |  |  |  |  | $\bullet$ |  | $\bullet$ |
| Torque regulation (page 144) | $\bullet$ (1) | $\bullet$ (1) |  | -(1) | -(1) | $\bullet$ (1) | $\bullet$ (1) | $\bullet(1)$ | $\bullet$ (1) |  |  |  |  | $\bullet$ (1) | $\bullet$ |  | $\bullet$ | $\bullet$ (1) |
| Load sharing (page $\underline{63}$ ) |  |  |  |  | $\bullet$ |  |  |  |  |  |  |  |  |  |  | $\bullet$ |  |  |
| Position control using limit switches (page 155) |  |  |  |  | $\bullet$ |  |  |  |  |  |  |  |  |  | $\bullet$ (1) | $\bullet$ |  |  |

(1)Torque regulation and speed reference functions are only incompatible while torque regulation mode is active.
(2) Priority is given to the first of these two stop modes to be activated.
(3)Excluding special application with reference channel Fr2 (see diagrams on pages $\underline{87}, \underline{88}$ and $\underline{89}$ ).
$\bullet$ Incompatible functions $\square$ Compatible functions $\square$ N/A

Priority functions (functions that cannot be active at the same time):

$\leftarrow \tau \uparrow$| The function indicated by the arrow has priority over the |
| :--- |
| other. |

Stop functions have priority over run commands.
Speed references via logic command have priority over analog references.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Incompatible functions

The following functions will be inaccessible or deactivated in the cases described below:

## Automatic restart

This is only possible for 2-wire level detection control $(\mathrm{tCC}=2 \mathrm{C}$ and $\mathrm{tCt}=\mathrm{LEL}$ or PFO$)$.

## Catch on the fly

This is only possible for 2-wire level detection control ( $\mathrm{t} C \mathrm{C}=2 \mathrm{C}$ and $\mathrm{tCt}=\mathrm{LEL}$ or PFO).
This function is locked if the automatic DC injection on stopping is configured as Continuous (AdC = Ct).

The SUP- monitoring menu (page 36) can be used to display the functions assigned to each input in order to check their compatibility.
When a function is assigned, a $\checkmark$ appears on the graphic display terminal, as illustrated in the example below:

| RDY $\quad$ Term $\quad+0.00 \mathrm{~Hz} \quad 0 \mathrm{~A}$ |  |  |
| :--- | :--- | :--- |
| 1.7 APPLICATION FUNCT. |  |  |
| REFERENCE SWITCHING |  |  |
| REF. OPERATION |  |  |
| RAMP |  |  |
| STOP CONFIGURATION |  |  |
| JOG |  |  |
| Code | $\ll$ | $\gg$ |

If you attempt to assign a function that is incompatible with another function that has already been assigned, an alarm message will appear:

With graphic display terminal:

| RDY $\quad$ Term $+0.00 \mathrm{~Hz} \quad 0 \mathrm{~A}$ |
| :--- |
| INCOMPATIBILITY |
| The function can't be assigned |
| because an incompatible |
| function is already selected. See |
| programming book. |
| ESC or ENT to continue |
|  |

With integrated display terminal:
COMP until ENT or ESC is pressed.
When you assign an analog logic input, a reference channel or a bit to a function, pressing the HELP button will display the functions that may already have been assigned to this input, bit or channel.

## Summing input/Subtracting input/Multiplier


$A=(F r 1$ or $F r 1 b+S A 2+S A 3-d A 2-d A 3) \times M A 2 \times M A 3$

- If SA2, SA3, dA2, dA3 are not assigned, they are set to 0 .
- If MA2, MA3 are not assigned, they are set to 1.
- A is limited by the minimum LSP and maximum HSP parameters.
- For multiplication, the signal on MA2 or MA3 is interpreted as a \%; 100\% corresponds to the maximum value of the corresponding input. If MA2 or MA3 is sent via the communication bus or graphic display terminal, an MFr multiplication variable (see page 39) must be sent via the bus or graphic display terminal.
- The reversal of the direction of operation in the event of a negative result can be inhibited (see page 95).

| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| re F - | - [REFERENCE SWITCH] |
| rcb | [Ref.1B switching] <br> See the diagrams on pages 87,88 and 89 . [ No o ( nO ): no switching [LI1] (LI1) [...] (...): See the assignment conditions on page 94. <br> - If the state of the input or bit assigned is at 0, [Ref. 1 channel] (Fr1) is active (see page 95). <br> - If the state of the input or bit assigned is at $1,[$ Ref.1B channel] (Fr1) is active. |
|  | [Ref.1B channel] <br> This parameter can be accessed if [Ref.1b switching] ( rCb ) is set to a value other than $[\mathrm{No}](\mathrm{nO})$ [ No ] (nO): No source assigned [Al1] (Al1): Analog input [AI2] (AI2): Analog input [AI3] (AI3): Analog input, if extension card present [AI4] (A14): Analog input, if extension card present [Pulse input] (PI): Frequency input, if card present [Encoder ref.] (PG): Encoder input, if card present [HMI] (LCC): Graphic display terminal [Modbus] (Mdb): Modbus <br> $\square$ [CANopen] (CAn): CANopen <br> $\square$ [Com. card] (nEt): Communication card (if present) <br> $\square$ [Prog. card] (APP): Programmable card (if present) <br> Note: <br> In the following instances, only assignments via the terminals are possible: <br> - [Channel config.] (CHCF) = [Not separ.] (SIM) page 95 <br> - PID configured with PID references via the terminals |


| Code | Name／Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| －1－ | ［REF．OPERATIONS］ <br> Reference $=($ Fr1 or $\mathrm{Fr} 1 \mathrm{~b}+\mathrm{SA} 2+\mathrm{SA} 3-\mathrm{dA} 2-\mathrm{dA} 3) \times \mathrm{MA} 2 \times \mathrm{MA} 3$ ．See the diagrams on pages 87 and 88 ． Warning：This function cannot be used with all other functions．Observe the precautions on page 99. |  |
| 5月己 <br>  <br> ค 1 己 <br> ค 1 ヨ <br> A 14 <br> P I <br> PG <br> L［［ <br> П』 <br> ［月п <br> nEt <br> APP | $\square$［Summing ref．2］ <br> Selection of a reference to be added to［Ref． 1 channel］（Fr1）or［Ref．1B chann ［No］（nO）：No source assigned ［Al1］（Al1）：Analog input ［AI2］（AI2）：Analog input ［AI3］（AI3）：Analog input，if extension card present ［AI4］（AI4）：Analog input，if extension card present ［Pulse input］（PI）：Frequency input，if card present ［Encoder ref．］（PG）：Encoder input，if card present ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Modbus ［CANopen］（CAn）：CANopen ［Com．card］（ nEt ）：Communication card（if present） ［Prog．card］（APP）：Programmable card（if present） | $[\mathrm{No}](\mathrm{nO})$ <br> Fr1b）． |
| 5 Нヨ | ［Summing ref．3］ <br> Selection of a reference to be added to［Ref． 1 channel］（Fr1）or［Ref．1B channel <br> －Possible assignments are identical to［Summing ref．2］（SA2）above． | $[\mathrm{No}](\mathrm{nO})$ <br> Fr1b）． |
| d月己 | ［Subtract ref．2］ <br> Selection of a reference to be subtracted from［Ref． 1 channel］（Fr1）or［Ref．1B <br> －Possible assignments are identical to［Summing ref．2］（SA2）above． | $[\mathrm{No}](\mathrm{nO})$ <br> （Fr1b）． |
| d $\rightarrow \exists$ | ［Subtract ref．3］ <br> Selection of a reference to be subtracted from［Ref． 1 channel］（Fr1）or［Ref．1B <br> －Possible assignments are identical to［Summing ref．2］（SA2）above． | $[\mathrm{No}](\mathrm{nO})$ <br> annel］（Fr1b）． |
| П（ | ［Ref． 2 multiplier］ <br> Selection of a reference to be multiplied with［Ref． 1 channel］（Fr1）or［Ref．1B chan <br> －Possible assignments are identical to［Summing ref．2］（SA2）above． | $[\mathrm{No}](\mathrm{nO})$ nel] (Fr1b). |
| П（ | ［Ref． 3 multiplier］ <br> Selection of a reference to be multiplied with［Ref． 1 channel］（Fr1）or［Ref．1B <br> －Possible assignments are identical to［Summing ref．2］（SA2）above． | $[\mathrm{No}](\mathrm{nO})$ <br> nel］（Fr1b）． |


| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
|  | RAMPS] |  |  |
|  | [Ramp Shape] [Linear] (LIn) [S ramp] (S) [U ramp] (U) [Customized] (CUS) <br> S ramps <br> U ramps <br> Customized ramps <br> The curve coefficient is fixed, where $\mathrm{t} 2=0.6 \mathrm{xt} 1$ and $\mathrm{t} 1=$ set ramp time. <br> The curve coefficient is fixed, where $\mathrm{t} 2=0.5 \times \mathrm{t} 1$ and $\mathrm{t} 1=$ set ramp time. <br> tA1: Adjustable from 0 to 100\% (of t1) <br> tA2: Adjustable from 0 to ( $100 \%$ - tA1) (of t1) <br> tA3: Adjustable from 0 to 100\% (of t1) <br> tA4: Adjustable from 0 to ( $100 \%$ - tA3) (of t1) <br> where t 1 = set ramp time |  | [Linear] (LIn) |
|  |  |  |  |
|  |  |  |  |
| $\begin{array}{lll}\text { Inr } \\ \\ \square . & \square & \\ \square . & 1 \\ & 1\end{array}$ | [0.01]: Ramp up to 99.99 seconds [0.1]: Ramp up to 999.9 seconds [1]: Ramp up to 9999 seconds <br> This parameter is valid for [Acceleration] (ACC), [Deceleration] (dEC), [Acceleration 2] (AC2) et [Deceleration 2] (dE2). |  |  |
| A [ [ | $\square$ [Acceleration] <br> (1) <br> Time to accelerate from 0 to the [Rated motor freq.] (FrS) (page 53). Make sure that this value is compatible with the inertia being driven. |  |  |
| $d E[$ | Time to decelerate from the [Rated motor freq.] (FrS) (page 53) to 0 . Make sure that this value is compatible with the inertia being driven. |  |  |

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

(1) The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| 5tt - | [STOP CONFIGURATION] |
|  | - [Type of stop] <br> Stop mode on disappearance of the run command or appearance of a stop command. [Ramp stop] (rMP): On ramp [Fast stop] (FSt): Fast stop [Freewheel] (nSt): Freewheel stop [DC injection] (dCI): DC injection stop <br> Note: If the "brake logic" function on page 126 has been enabled, only ramp type stops may be configured. |
|  | [Freewheel assign.] [ No ] (nO): Not assigned [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If logic I/O card present [LI11] (LI11) to [LI14] (LI14): If I/O extension card present [C100] (C100) to [C115] (C115): With Modbus in I/O mode [C200] (C200) to [C215] (C215): With CANopen in I/O mode [C300] (C300) to [C315] (C315): With a communication card in I/O mode [C400] (C400) to [C415] (C415): With a programmable card in I/O mode [CD00] (Cd00) to [CD13 (Cd13): In I/O mode can be switched with possible logic inputs [CD14] (Cd14) to [CD15 (Cd15): In I/O mode can be switched without logic inputs <br> The stop is activated when the logic state of the input or bit is at 0 . If the input returns to state 1 and if the run command is still active, the motor will only restart if [ $2 / 3$ wire control] (tCC) page $\underline{65}=[2$ wire $]$ (2C) and [2 wire type] (tCt) = [Level] (LEC) or [Prior. FW] (PFO). If not, a new run command must be sent. |
| F5t | [Fast stop assign.] <br> Warning: This function cannot be used with all other functions. Observe the precautions on page 99. [ No ] ( nO ): Not assigned [LII] (LII) [...] (...): See the assignment conditions on page 94. <br> The stop is activated when the logic state of the input changes to 0 or the logic state of the bit changes to 1 (bit state 0 in I/O mode). If the input returns to state 1 and if the run command is still active, the motor will only restart if [2/3 wire control] (tCC) page $\underline{65}=[2$ wire $](2 \mathrm{C})$ and $[2$ wire type] (tCt) $=[$ Level $]$ (LEC) or [Prior. FW] (PFO). If not, a new run command must be sent. |
| $d[F$ | [Ramp divider] <br> The parameter can be accessed for [Type of stop] (Stt) = [Fast stop] (FSt) and for [Fast stop assign.] (FSt) set to a value other than [ No ] ( nO ). <br> The ramp enabled (dEC or dE2) is then divided by this coefficient when stop requests are sent. The value 0 corresponds to the minimum ramp time. |

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

(1) The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.
(3)Warning: These settings are independent of the [AUTO DC INJECTION] function.

(1) The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Preset speeds

$2,4,8$ or 16 speeds can be preset, requiring 1,2,3 or 4 logic inputs respectively.
You must configure 2 and 4 speeds in order to obtain 4 speeds.
You must configure 2, 4 and 8 speeds in order to obtain 8 speeds.
You must configure 2, 4, 8 and 16 speeds in order to obtain 16 speeds.
Combination table for preset speed inputs

| 16 speeds <br> LI (PS16) | 8 speeds <br> LI (PS8) | 4 speeds <br> LI (PS4) | 2 speeds <br> LI (PS2) | Speed reference |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Reference (1) |
| 0 | 0 | 0 | 1 | SP2 |
| 0 | 0 | 1 | 0 | SP3 |
| 0 | 0 | 1 | 1 | SP4 |
|  | 1 | 0 | 0 | SP5 |
| 0 | 1 | 0 | 1 | SP6 |
| 0 | 1 | 1 | 0 | SP7 |
| 0 | 1 | 1 | 1 | SP8 |
| 1 | 0 | 0 | 0 | SP9 |
| 1 | 0 | 0 | 1 | SP10 |
| 1 | 0 | 1 | 0 | SP11 |
| 1 | 0 | 1 | 1 | SP12 |
| 1 | 1 | 0 | 0 | SP13 |
| 1 | 1 | 0 | 1 | SP14 |
| 1 | 1 | 1 | 0 | SP15 |
| 1 | 1 | 1 | 1 | SP16 |

(1)See the diagram on page 87: Reference $1=(\mathrm{SP} 1)$.

## Code

Name/Description
Adjustment range
Factory setting


## ［1．7－APPLICATION FUNCT．］（FUn－）

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
|  | －［PRESET SPEEDS］（continued） |  |  |
| $5 P 己$ | $\square$［Preset speed 2］（1） | 0 to 1000 Hz | 10 Hz |
| $5 Р \exists$ | $\square$［Preset speed 3］（1） |  | 15 Hz |
| $5 P 4$ | $\square$［Preset speed 4］（1） |  | 20 Hz |
| $5 P 5$ | $\square$［Preset speed 5］（1） |  | 25 Hz |
| 5 P6 | $\square$［Preset speed 6］（1） |  | 30 Hz |
| 5 P 7 | $\square$［Preset speed 7］（1） |  | 35 Hz |
| 5 P日 | $\square[$ Preset speed 8］（1） |  | 40 Hz |
| 5 P9 | $\square[$ Preset speed 9］（1） |  | 45 Hz |
| 5 P10 | $\square[$ Preset speed 10］（1） |  | 50 Hz |
| 5 P11 | $\square$［Preset speed 11］（1） |  | 55 Hz |
| 5 P1 | $\square$［Preset speed 12］（1） |  | 60 Hz |
| 5 P1ヨ | $\square$［Preset speed 13］（1） |  | 70 Hz |
| $5 P 14$ | $\square[$ Preset speed 14］（1） |  | 80 Hz |
| 5 P15 | $\square[$ Preset speed 15］（1） |  | 90 Hz |
| 5 P16 | $\square$［Preset speed 16］（1） |  | 100 Hz |
|  | The appearance of these［Preset speed x ］（SPx）parameters is determined by the number of speeds configured． |  |  |

（1）The parameter can also be accessed in the［1．3－SETTINGS］（SEt－）menu．

## [1.7 - APPLICATION FUNCT.] (FUn-)

## +/- speed

Two types of operation are available.

1. Use of single action buttons: Two logic inputs are required in addition to the operating direction(s).

The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.
2. Use of double action buttons: Only one logic input assigned to "+ speed" is required.
+/- speed with double action buttons:
Description: 1 button pressed twice for each direction of rotation. Each press closes a contact.

|  | Released (- speed) | $1^{\text {st }}$ press <br> (speed maintained) | $2^{\text {st }}$ press <br> $(+$ speed) |
| :--- | :---: | :---: | :---: |
| Forward button | - | a | a and b |
| Reverse button | - | c | c and d |

Wiring example:



Do not use this +/-speed type with 3-wire control.

## Whichever type of operation is selected, the max. speed is set by HSP (see page $\underline{x x}$ ).

## Note:

If the reference is switched via rFC (see page 96) from any reference channel to another reference channel with " $+/$ - speed", the value of reference rFr (after ramp) may be copied at the same time in accordance with the parameter [Copy channel 1 --> 2 Cmd and Ref] (COP), see page 96 .
If the reference is switched via rFC (see page 96) from a reference channel with " $+/$-speed" to any other reference channel, the value of reference rFr (after ramp) is always copied at the same time.

This prevents the speed being incorrectly reset to zero when switching takes place.

| Code | Name/Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| UPd- | ■ [+/-SPEED] <br> Function can be accessed for reference channel [Ref. 2 channel ] (Fr2) = [ $+/-$ speed] (UPd) see page 96. Warning: This function cannot be used with all other functions. Observe the precautions on page 99. |  |
|  | $\square$ [+Speed assign.] [No] (nO): Function inactive [LII] (LI1) [...] (...): See the assignment conditions on page 94. <br> Function active if the state of the input or bit assigned is at 1. | [ No ] ( nO ) |
|  | [-Speed assign.] [ No ] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 94. <br> Function active if the state of the input or bit assigned is at 1. | $[\mathrm{No}](\mathrm{nO})$ |
| Str | [Reference saved] <br> Associated with the " $+/$ speed" function, this parameter can be used to save the <br> - When the run commands disappear (saved to RAM) <br> - When the mains supply or the run commands disappear (saved to EEPROM) <br> On the next start-up, the speed reference is the last reference saved. [No] (nO): No save (on the next startup, the speed reference is the [Low speed] [RAM] (rAM): Save to RAM [E2Prom] (EEP): Save to EEPROM | [ No ] (nO) <br> rence: <br> SP), see page $\underline{x x}$ ) |

## [1.7 - APPLICATION FUNCT.] (FUn-)

## +/- speed around a reference

The reference is given by Fr1 or Fr1b with summing/subtraction/multiplication functions and preset speeds if relevant (see the diagram on page 87). For improved clarity, we will call this reference reference A. The action of the + speed and -speed buttons can be set as a $\%$ of this reference $A$. On stopping, the reference ( $\mathrm{A}+/$-speed) is not saved, so the drive restarts with reference $A$ only.
The maximum total reference is always limited by the [High speed] (HSP) and the minimum reference by [Low speed] (LSP), see page $\underline{x}$.
Example of 2-wire control:


| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| $5 r E-$ | [+/-SPEED AROUND REF.] <br> Function can be accessed for reference channel [Ref. 1 channel] (Fr1). <br> Warning: This function cannot be used with all other functions. Observe the precautions on page |
| $451$ <br> $\square \square$ <br> L I I | [+Speed assign.] [ No ] ( nO ): Function inactive [LI1] (LII) [...] (...): See the assignment conditions on page 94. <br> Function active if the state of the input or bit assigned is at 1. |
| $+51$ | [-Speed assign.] [ No ] (nO): Function inactive [LI1] (LII) [...] (...): See the assignment conditions on page 94. <br> Function active if the state of the input or bit assigned is at 1. |
| $5 r P$ | $\square$ [+/-Speed limitation] <br> This parameter limits the variation range with +/- speed as a \% of the reference. The ramps used in this function are [Acceleration 2] (AC2) and [Deceleration 2] (dE2). |
| A[2 | [Acceleration 2] <br> Time to accelerate from 0 to the [Rated motor freq.] (FrS). Make sure that this value is compatible with the inertia being driven. <br> The parameter can be accessed if $+/$ - speed is assigned. |
| dE 己 | [Deceleration 2] <br> (1) <br> Time to decelerate from the [Rated motor freq.] (FrS) to 0 . Make sure that this value is compatible with the inertia being driven. <br> The parameter can be accessed if $+/-$ speed is assigned. |

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Reference saving:

Saving the speed reference value of the analog input using a logic input command lasting longer than 0.1 s .

- This function is used to control the speed of several drives alternately via a single analog setpoint and a logic input for each drive.
- It is also used to confirm a line reference (serial link) on several drives via a logic input. This allows movements to be synchronized by getting rid of variations when the reference is sent.
- The setpoint is acquired 100 ms after the rising edge of the request. A new reference is not then acquired until a new request is made.



## Code <br> Name/Description <br> Adjustment range <br> Factory setting

| 5РП - | [REFERENCE IN MEMORY] |
| :---: | :---: |
| $5 \text { Р } \Pi$ $\cap \square$ $L 11$ | [Ref. memo. ass.] [ No ] ( nO ): Function inactive [LI1] (LII) [...] (...): See the assignment conditions on page 94. <br> Function active if the state of the input or bit assigned is at 1. |
| FL I- | [FLUXING BY LI] |
| FL I <br> п <br> L I I | [Fluxing assignment] [No] (nO): Function inactive [LI1] (LII) [...] (...): See the assignment conditions on page 94. <br> Function active if the state of the input or bit assigned is at 1. <br> Assignment only possible if [Motor fluxing] (FLU) page $\underline{47}=[$ Non cont.] (FnC). <br> Motor fluxing: <br> In order to obtain rapid high torque on startup, magnetic flux needs to be already established in the motor. <br> - This function can be selected in open or closed-loop operation. <br> - In continuous mode (FCt), the drive automatically builds up flux when it is powered up. <br> - In non-continuous mode: <br> - If an LI is assigned to the motor fluxing command, flux is built up when the command is confirmed. <br> - If no LI is assigned or if it is not active when a run command is given, the motor is fluxed when it starts up. <br> - The flux current is greater than nCr (configured rated motor current) when the flux is established and is then adjusted to the motor magnetizing current. |

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Limit switch management

This function can be used to manage trajectory limits using limit switches.
The stop mode is configurable.
When the stop contact is activated, startup in the other direction is authorized.
Example:


The stop is activated when the state of the input is at 0 (contact open).

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| ?L 5t - | [LIMIT SWITCH MANAGEMENT] <br> Warning: This function cannot be used with all other functions. Observe the precautions on page 99. |  |  |
|  | $\square$ [Stop FW limit sw.] [ No ] ( nO ): Function inactive [LII] (LII) [LI4] (LI4): See the assignment conditions on page 94. |  | [ No ] ( nO ) |
|  | [Stop RV limit sw.] [No] (nO): Function inactive [LII] (LI1) [LI4] (LI4): See the assignment conditions on page 94. |  | [ No ] ( nO ) |
| $\begin{aligned} & \text { LAS } \\ & \text { n5t } \\ & \text { r } \quad \text { F } P \\ & \text { F } 5 t \end{aligned}$ | $\square$ [Type of stop] [Freewheel] (nSt) [Ramp stop] (rMP) [Fast stop] (FSt) <br> When the state of the assigned input changes to 0 , the stop Restarting is only authorized for the other operating directio If the two inputs [Stop FW limit sw.] (LAF) and [Stop RV lim be impossible. <br> The parameter can be accessed if [Stop FW limit sw.] | controlled in accorda once the motor has sw.] (LAr) are assign <br> or [Stop RV limit sw | [Freewheel] (nSt) <br> with the selected ped. <br> o state 0 , restartin <br> $\mathrm{LAr})$ is assigned. |

## Brake logic control

Used to control an electromagnetic brake by the drive, for horizontal and vertical hoisting applications, and for unbalanced machines (parking brake).

## Principle:

## Vertical hoisting movement:

Maintain motor torque in the load holding direction during brake opening and closing, in order to hold the load, and start smoothly when the brake is released.

## Horizontal movement:

Synchronize brake release with the build-up of torque during start-up and brake engage at zero speed on stopping, to prevent jolting.

## Recommended settings for brake control for a vertical hoisting application:

1. Brake impulse (bIP): YES. Ensure that the direction of rotation FW corresponds to lifting the load.

For applications in which the load being lowered is very different from the load being lifted, set BIP = 2 lbr (e.g., ascent always with a load and descent always without a load).
2. Brake release current (lbr and Ird if BIP = 2 lbr ):

Adjust the brake release current to the nominal current indicated on the motor.
During testing, adjust the brake release current in order to hold the load smoothly.
3. Acceleration time:

For hoisting applications, it is advisable to set the acceleration ramps to more than 0.5 seconds. Ensure that the drive does not exceed the current limit.
The same recommendation applies for deceleration.
Note: For a hoisting movement, a braking resistor should be used. Ensure that the settings and configurations selected cannot cause a drop or a loss of control of the lifted load.
4. Brake release delay (brt):

Adjust according to the type of brake. It is the time required for the mechanical brake to release.
5. Brake release frequency (blr):

Leave in [Auto], adjust if necessary.
6. Brake engage frequency (bEn):

Leave in [Auto], adjust if necessary.
7. Brake engage time $(\mathrm{bEt})$ :

Adjust according to the type of brake. It is the time required for the mechanical brake to engage.

## Recommended settings for brake control for a horizontal hoisting application:

1. Brake impulse (bIP): No
2. Brake release current (lbr): Set to 0 .
3. Brake release delay (brt):

Adjust according to the type of brake. It is the time required for the mechanical brake to release.
4. Brake release frequency (blr):

Leave in [Auto], adjust if necessary.
5. Brake engage frequency (bEn):

Leave in [Auto], adjust if necessary.
6. Brake engage time (bEt):

Adjust according to the type of brake. It is the time required for the mechanical brake to engage.

## [1.7 - APPLICATION FUNCT.] (FUn-)

Horizontal movement, open-loop control


Key:

- (bEn): [Brake engage freq]
- (bEt): [Brake engage time]
- (brt): [Brake Release time]
- (lbr): [Brake release I FW]
- (SdC1): [l inject. DC auto 1]
- (tbE): [Brake engage time]
- (ttr): [Time to restart]


## [1.7 - APPLICATION FUNCT.] (FUn-)

## Vertical movement, open-loop control



Key:

- (bEn): [Brake engage freq]
- (bEt): [Brake engage time]
- (bIr): [Brake release freq]
- (brt): [Brake Release time]
- (lbr): [Brake release I FW]
- (JdC): [Jump at reversal]
- (tbE): [Brake engage time]
- (ttr): [Time to restart]


## [1.7 - APPLICATION FUNCT.] (FUn-)

## Vertical or horizontal movement, closed-loop control



## Key:

- (bEt): [Brake engage time]
- (brt): [Brake Release time]
- (lbr): [Brake release I FW]
- (tbE): [Brake engage time]
- (ttr): [Time to restart]

| Code | Name／Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| bL［－ | ［BRAKE LOGIC CONTROL］ <br> Warning：This function cannot be used with all other functions．Observe the precautio |
| b L［ | ［brake assignment］ <br> If the brake is assigned，only ramp stops and fast stops are possible．Check the［Type of stop］ （Stt）page 107. <br> Logic output or control relay ［ No ］（ nO ）：Function not assigned（in this case，none of the function parameters can be accessed）． ［LO1］（LO1） to ［LO4］（LO4）：Logic output（if an extension card has been inserted，LO1 to LO2 or LO4 can be selected）． ［R2］（r2） <br> to <br> ［R4］（r4）：Relay（selection extended to R3 or R4 if an extension card has been inserted）． |
| b 5 <br> UEr <br> HBr | ［Movement type］ ［Hoisting］（UEr）：Driving－load movement（hoisting winch，for example）． ［Traveling］（HOr）：Resistive－load movement（overhead crane movement，for example）． |
| b［ $\begin{array}{ccc} n & \square & \square \\ L & 1 & 1 \\ & - \\ & - \\ L & 1 & 4 \end{array}$ | ［Brake contact］ <br> If the brake is fitted with a monitoring contact（closed for released brake）． ［ No ］（ nO ）：Function inactive ［LI1］（LII） ［LI4］（LI4）：See the assignment conditions on page 94. |
|  | ［Brake impulse］ <br> The parameter can be accessed if［Weight sensor ass．］（PES）$=[\mathrm{No}](\mathrm{nO})$（see page 130）． <br> $\square$［No］（nO）：The motor torque is given in the required operating direction． <br> $\square$［Yes］（YES）：The motor torque is always Forward（check that this direction corresponds to lifting）． <br> $\square$［2 IBR］（2lbr）：The torque is in the required direction，Ibr for Forward and Ird for Reverse． <br> If the［Movement type］（bSt）is［Traveling］（HOr），［Brake impulse］（bIP）is forced to［No］（nO）． |
| lbr | ［Brake release I FW］ <br> Brake release current threshold for Ascending or Forward movement |
| Ird | ［Brake release I RV］ <br> Brake release current threshold for Descending or Reverse movement The parameter can be accessed if［Brake impulse］（bIP）$=2 \mathrm{lbr}$ |
| brt | ［Brake Release time］ <br> （1） <br> Brake release time delay |
| b Ir トリヒロ | ［Brake release freq］ <br> Brake release frequency threshold <br> ［Auto］（AUtO）：The drive takes a value equal to the rated slip of the motor，calculated using the drive parameters． 0 to 10 Hz ：Manual control |

（1）The parameter can also be accessed in the［1．3－SETTINGS］（SEt－）menu．
（2）In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate．

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Brake logic control expert parameters

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| brHa | - [BRH_b0] |  | 0 |
| brHI | - [BRH_b1] |  | 0 |
| brHe | - [BRH_b2] |  | 0 |
| brHヨ | - [BRH_b3] |  | 0 |
| brH4 | - [BRH_b4] |  | 0 |
| brr | $\square$ [Current ramp time] | 0 to 5.00 s | 0 s |

## [1.7 - APPLICATION FUNCT.] (FUn-)

## External weight measurement:

This function uses the information provided by a weight sensor via an analog input (usually a 4-20 mA signal) to adapt the current [Brake release I FW] (Ibr) of the Brake logic control function.

Examples:

- Measurement of the total weight of a hoisting winch and its load
- Measurement of the total weight of an elevator winch, cabin and counterweight

The current [Brake release I FW] (lbr) is adapted in accordance with the curve below.


This curve can illustrate a weight sensor on an elevator winch, where the zero load on the motor indicates that the load in the cabin is not equal to zero.

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## High-speed hoisting:

This function can be used to optimize the cycle times for hoisting movements for zero or lightweight loads. It authorizes operation at "constant power" in order to reach a speed greater than the rated speed without exceeding the rated motor current.
The speed remains limited by the High speed HSP parameter, page xx.
The function acts on the speed reference pedestal and not on the reference itself.

## Principle:



## [1.7 - APPLICATION FUNCT.] (FUn-)

Two operating modes are possible:

- "Speed reference" mode: The maximum permissible speed is calculated by the drive during a speed phase set in order that the drive can measure the load.
- "Current limitation" mode: The maximum permissible speed is the speed that supports current limitation in motor mode, in the "Ascending" direction only. For the "Descending" direction, operation is always in "Speed reference" mode.


## Speed reference mode



OSP: Adjustable speed phase for load measurement
tOS: Load measuring time
Two parameters can be used to reduce the speed calculated by the drive, for ascending and descending.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Current limitation mode



SCL: Adjustable speed threshold, above which current limitation is active
CLO: Current limitation for high-speed function

| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| H50- | [HIGH SPEED HOISTING] <br> Warning: This function cannot be used with all other functions. Observe the precautions on page 99. |
| H5 $\begin{gathered} n 0 \\ 550 \\ \text { L } 50 \end{gathered}$ | [High speed hoisting] [ No ] (nO): Function inactive [Speed ref] (SSO): "Speed reference" mode [Current Limit] (CSO): "Current limitation" mode |
| ᄃ $\square F$ | [Motor speed coeff.] <br> (1) <br> Speed reduction coefficient calculated by the drive for Ascending direction. <br> The parameter can be accessed if [High speed hoisting] (HSO) = [Speed ref] (SSO) |
| [ $\square_{\text {r }}$ | [Gen. speed coeff] <br> Speed reduction coefficient calculated by the drive for Descending direction. <br> The parameter can be accessed if [High speed hoisting] (HSO) = [Speed ref] (SSO) |
| t $\square 5$ | $\square$ [Load measuring tm.] <br> Duration of speed phase for measurement. <br> The parameter can be accessed if [High speed hoisting] (HSO) = [Speed ref] (SSO) |
| प5P | [Measurement spd] <br> Speed stabilized for measurement. <br> The parameter can be accessed if [High speed hoisting] (HSO) $=$ [Speed ref] (SSO) |
| [ L - | [High speed I Limit] <br> Current limitation at high speed. <br> The parameter can be accessed if [High speed hoisting] (HSO) $=$ [Lim. Courant] (CSO) |
| $5[1$ | [I Limit. frequency] <br> Frequency threshold, above which the high-speed limitation current is active. The parameter can be accessed if [High speed hoisting] (HSO) = [Lim. Courant] (CSO) |

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## PID regulator

## Block diagram

The function is activated by assigning an analog input to the PID feedback (measurement).


## PID feedback:

The PID feedback must be assigned to one of the analog inputs Al1 to Al4, to the frequency input or the encoder, in accordance with the use of extension cards.

## PID reference:

The PID reference must be assigned to the following parameters:

- Preset references via logic inputs (rP2, rP3, rP4)
- In accordance with the configuration of [Act. internal PID ref.] (PII) page 139:
- Internal reference (rPI) or
- Reference A (Fr1 or Fr1b, see pages 88 and 89)

Combination table for preset PID references

| LI (Pr4) | LI (Pr2) | $\mathrm{Pr} 2=\mathrm{nO}$ | Speed |
| :---: | :---: | :---: | :---: |
|  |  |  | rPI or A |
| 0 | 0 |  | rPI or A |
| 0 | 1 |  | rP2 |
| 1 | 0 |  | rP3 |
| 1 | 1 |  | rP4 |

A predictive speed reference can be used to initialize the speed on restarting the process.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Scaling of feedback and references:

- Parameters PIF1, PIF2

Can be used to scale the PID feedback (sensor range).
This scale MUST be maintained for all other parameters.

- Parameters PIP1, PIP2

Can be used to scale the adjustment range.
Example: Adjustment of the volume of a tank, between $6 \mathrm{~m}^{3}$ and $15 \mathrm{~m}^{3}$.

- Sensor used 4-20 mA, $4.5 \mathrm{~m}^{3}$ for $4 \mathrm{~mA}, 20 \mathrm{~m}^{3}$ for 20 mA , with the result that PIF1 $=4500$ and PIF2 $=20000$ (use values as close as possible to the maximum format (65535), while retaining powers of 10 in relation to the actual values).
- Adjustment range 6 to $15 \mathrm{~m}^{3}$, with the result that PIP1 $=6000$ and PIP2 $=15000$.
- Example references:
- rP1 (internal reference) $=9500$
- rp2 $($ preset reference $)=6500$
- rP3 (preset reference) $=8000$
$-\mathrm{rP4}($ preset reference $)=11200$
The [DISPLAY CONFIG.] menu can be used to customize the name of the unit displayed and its format.


## Other parameters:

- rSL parameter:

Can be used to set the PID error threshold above which the PID regulator will be reactivated (wake-up) after a stop due to the max. time threshold being exceeded at low speed (tLS).

- Reversal of the direction of correction (PIC): If PIC $=\mathrm{nO}$, the speed of the motor will increase when the error is positive, for example: pressure control with a compressor. If PIC = YES, the speed of the motor will decrease when the error is positive, for example: temperature control using a cooling fan.
- The integral gain may be short-circuited by a logic input.
- An alarm on the PID feedback may be configured and indicated by a logic output.
- An alarm on the PID error may be configured and indicated by a logic output.


## [1.7 - APPLICATION FUNCT.] (FUn-)

## "Manual - Automatic" operation with PID:

This function combines the PID regulator, the preset speeds and a manual reference. Depending on the state of the logic input, the speed reference is given by the preset speeds or by a manual reference input with the PID function.

Manual reference (PIM)

- Analog inputs AI1 to AI4
- Frequency input
- Encoder


## Predictive speed reference (FPI)

- [AI1] (Al1): Analog input
- [AI2] (Al2): Analog input
- [AI3] (AI3): Analog input, if extension card present
- [AI4] (AI4): Analog input, if extension card present
- [Pulse input] (PI): Frequency input, if card present
- [Encoder ref.] (PG): Encoder input, if card present
- [HMI] (LCC): Graphic display terminal
- [Modbus] (Mdb): Modbus
- [CANopen] (CAn): CANopen
- [Com. card] ( nEt ): Communication card (if present)
- [Prog. card] (APP): Programmable card (if present)


## Setting up the PID regulator

1. Configuration in PID mode

See the diagram on page 135 .
2. Perform a test in factory settings mode (in most cases, this will be sufficient).

To optimize the drive, adjust rPG or rIG gradually and independently and observe the effect on the PID feedback in relation to the reference.

## 3. If the factory settings are unstable or the reference is incorrect:

- Perform a test with a speed reference in Manual mode (without PID regulator) and with the drive on load for the speed range of the system: - In steady state, the speed must be stable and comply with the reference, and the PID feedback signal must be stable. - In transient state, the speed must follow the ramp and stabilize quickly, and the PID feedback must follow the speed. If this is not the case, see the settings for the drive and/or sensor signal and cabling.
- Switch to PID mode.
- Set brA to no (no auto-adaptation of the ramp).
- Set the speed ramps (AC2, dE2) to the minimum permitted by the mechanics without triggering an ObF fault.
- Set the integral gain (rIG) to minimum.
- Leave the derivative gain (rdG) at 0 .
- Observe the PID feedback and the reference.
- Switch the drive ON/OFF a number of times or vary the load or reference rapidly.
- Set the proportional gain (rPG) in order to ascertain the ideal compromise between response time and stability in transient phases (slight overshoot and 1 to 2 oscillations before stabilizing).
- If the reference varies from the preset value in steady state, gradually increase the integral gain (rIG), reduce the proportional gain (rPG) in the event of instability (pump applications), find a compromise between response time and static precision (see diagram).
- Lastly, the derivative gain may permit the overshoot to be reduced and the response time to be improved, although this will be at the expense of a compromise in stability that is more difficult to achieve, as it depends on 3 gains.
- Perform in-production tests over the whole reference range.


## [1.7 - APPLICATION FUNCT.] (FUn-)



The oscillation frequency depends on the system kinematics.

| Parameter | Rise time | Overshoot | Stabilization time | Static error |
| :---: | :---: | :---: | :---: | :---: |
| rPG |  |  | $=$ |  |
| rIG |  |  |  |  |
| rdG | r |  |  |  |


(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4 -digit display with a period mark after the thousand digit, e.g.: 15.65 for 15650.

(1) The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g.: 15.65 for 15650.

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g.: 15.65 for 15650.

(1)The parameter can also be accessed in the [1.3- SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g.: 15.65 for 15650.

## Torque regulation



The function can be used to switch between speed regulation mode and torque regulation mode.
In torque regulation mode, the speed may vary within a configurable "deadband". When it reaches a lower or upper limit, the drive automatically reverts to speed regulation (fallback) and remains at this limit speed. The regulated torque is therefore no longer maintained and two scenarios may occur.

- If the torque returns to the required value, the drive will return to torque regulation.
- If the torque does not return to the required value at the end of a configurable period of time, the drive will switch to fault or alarm mode.

- $A B$ and CD: "Fallback" to speed regulation
- BC: Torque regulation zone
- E: Ideal operating point

The torque sign and value can be transmitted via a logic output and an analog output.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $t \square_{r}$ | [TORQUE REGULATION] <br> This function can only be accessed for [Motor control type] (Ctt) = [SVC I] (CUC) or [FVC] (FUC). Warning: This function cannot be used with all other functions. Observe the precautions on page 99. |  |  |
| t5 5 | $\square$ [Trq/spd switching] [No] (nO): Function inactive, thereby preventing access to other parameters. [Yes] (YES): Permanent torque regulation [LI1] (LII) [...] (...): See the assignment conditions on page 94. <br> If the state of the input or bit assigned is at 1: Torque regulation. <br> If the state of the input or bit assigned is at 0 : Speed regulation. |  | [ No ] ( nO ) |
|  | - [Torque ref. channel] [Al1] (Al1): Analog input [AI2] (AI2): Analog input [AI3] (Al3): Analog input, if extension card present [AI4] (AI4): Analog input, if extension card present [Pulse input] (PI): Frequency input, if card present [Encoder ref.] (PG): Encoder input, if card present [HMI] (LCC): Graphic display terminal [Modbus] (Mdb): Modbus [CANopen] (CAn): CANopen [Com. card] (nEt): Communication card (if present) [Prog. card] (APP): Programmable card (if present) |  | [ No ] ( nO ) |
| t5d $\begin{array}{rlr} \\ & n & 0 \\ L & 1 & 1 \\ & & - \\ & & -\end{array}$ | $\square$ [Torque ref. sign] [No] (nO): Function inactive [LI1] (LI1) [...] (...): See the assignment conditions on page 94. <br> If the state of the input or bit assigned is at 0 , the torque sign is the same as the reference. If the state of the input or bit assigned is at 1 , the torque sign is the opposite of the reference. |  |  |
| trt | [Torque ratio] <br> Coefficient applied to the [Torque reference] (tr1). | 1 to 1,000\% | 100\% |
| $t r P$ | [Torque ramp time] <br> Torque rise and fall time for a variation of $100 \%$ of the | $\begin{equation*} 0 \text { to } 99.99 \mathrm{~s} \tag{1} \end{equation*}$ <br> ence. | 0 |
| 5t 5Pd n5t 5Pn | [Torque regul. stop][Speed] (SPd): Speed regulation stop, in accordance with the type of stop configuration (see page 107)[Freewheel] (nSt): Freewheel stop[Spin] (SPn): Zero torque stop, but conserving flux in the motor. This type of operation is only possible if [Motor control type] (Ctt) = [FVC] (FUC). |  |  |
| $5 P$ ¢ | The parameter can be accessed if [Torque regul. stop] (tSt) = [Spin] (SPn) Spin time following stop, in order to remain ready to restart quickly. |  |  |

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
|  | ［［TORQUE REGULATION］（continued） |  |  |
| dロP | ［Positive deadband］ <br> Positive deadband． <br> Value added algebraically to speed reference． <br> Example for dbP＝10： <br> －If reference $=+50 \mathrm{~Hz}:+50+10=60$ <br> －If reference $=-50 \mathrm{~Hz}:-50+10=-40$ | 0 to 1000 Hz | 10 Hz |
|  |  |  |  |
| dbn | ［Negative deadband］ <br> Negative deadband． <br> Value subtracted algebraically from speed reference． <br> Example for dbn＝10： <br> －If reference $=+50 \mathrm{~Hz}$ ：$+50-10=40$ <br> －If reference $=-50 \mathrm{~Hz}$ ：$-50-10=-60$ | 0 to 1000 Hz | 10 Hz |
|  |  |  |  |
| $r \in \square$ | $\square$［R．torque time out］ | 0 to 999.9 s | 60 |
|  | Time following automatic exit of torque regulation mode in the event of a fault or alarm． |  |  |
| ヒロレ | ［R．torque flt mgt］ <br> Response of drive once time［R．torque time out］（rtO）has elapsed． ［Alarm］（ALrM） ［Fault］（FLt） |  | ［Alarm］（ALrM） |
| $\begin{array}{r} A L r \Pi \\ F L E \end{array}$ |  |  |  |

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Torque limit

There are two types of torque limitation:

- With a fixed parameter value
- With a value set by an analog input (AI, pulse or encoder)

If both types are enabled, the lowest value is taken into account. The two types of limitation can be configured or switched remotely using a logic input or via the communication bus.


(1) The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

(1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive rating plate.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Line contactor control

Example circuit:


The drive control power supply must be provided via an external 24 V source.
This function can only be used for a small number of consecutive maneuvers with a cycle shorter than 60 s (in order to avoid premature aging of the filter capacitor charging circuit).

The line contactor closes every time a run command (forward or reverse) is sent and opens after every stop.

Code
Name/Description
Adjustment range
Factory setting


## [1.7 - APPLICATION FUNCT.] (FUn-)

## Output contactor command

Allows the drive to control a contactor located between the drive and the motor. The request for the contactor to close is made when a run command is sent. The request for the contactor to open is made when there is no longer any current in the motor.

$\triangle$
If a DC injection braking function has been configured, it should not be left operating too long in stop mode, as the contactor only opens at the end of braking.

## Output contactor feedback

The corresponding logic input should be at 1 when there is no run command and at 0 during operation.
When there is an inconsistency, the drive trips on an FCF1 fault if the output contactor fails to close (Llx at 1 ) and on an FCF2 fault if it is stuck (Llx at 0).
The parameter [Time to motor run] (dbS) can be used to delay tripping in fault mode when a run command is sent and the parameter [Time to open cont.] (dAS) delays the stop when a stop command is set.

## Note:

Fault FCF1 (contactor failing to close) can be reset by the run command changing state from 1 to 0 ( $0-->1$--> 0 in 3 wire control).


The functions [Output contact ass.] (OCC) and [Output contact. fbk] (rCA) can be used individually or together.

(1) The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Positioning on limit switches or sensors

This function can be used for position management using position sensors or limit switch contacts for:

- Slowing down
- Low speed
- Stopping


The deceleration mode and stop mode can be configured.
When the slow down contact and/or stop contact is activated, starting in the opposite direction is authorized, even at high speed.

- Slowing down and stopping are activated when the state of the input is at 0 (contact open).
- A bit or logic input can be assigned to disable the function in order to restart or not stop on the position.


## [1.7 - APPLICATION FUNCT.] (FUn-)

## Example 1: Positioning using limit switches



Example 2: Positioning on a target zone


The disable contact can be used to restart in order to cross the target.

| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| LPG- | [POSITIONING BY SENSORS] <br> Warning: This function cannot be used with all other functions. Observe the precautions on page 99. |
| 5月F $\begin{array}{r} n \square \\ L \quad 11 \\ - \\ \\ \\ - \end{array}$ | [Stop FW limit sw.] [No] (nO): Not assigned [LI1] (LI1) [...] (...): See the assignment conditions on page 94. <br> Stop in forward direction, controlled when the state of the bit or input assigned is at 0 . |
|  | [Stop RV limit sw.] [No] (nO): Not assigned [LI1] (LI1) [...] (...): See the assignment conditions on page 94. <br> Stop in reverse direction, controlled when the state of the bit or input assigned is at 0 . |
| $\triangle A F$ $\begin{array}{cc} n & \square \\ L & 1 \\ & 1 \\ & - \\ & - \\ & - \end{array}$ | [Slow down forward] [No] (nO): Not assigned [LI1] (LI1) [...] (...): See the assignment conditions on page 94. <br> Slow down in forward direction, controlled when the state of the bit or input assigned is at 0 . |
| $d$ Ar $\begin{array}{r} n \square \\ L \quad 11 \\ \\ \\ \\ - \\ - \end{array}$ | [Slow down reverse] [No] (nO): Not assigned [LII] (LI1) [...] (...): See the assignment conditions on page 94. <br> Slow down in reverse direction, controlled when the state of the bit or input assigned is at 0 . |
| $[L 5$ $\begin{array}{ccc} n & \square \\ L & 1 & 1 \\ & - \\ & - \\ & - \end{array}$ | [Disable limit sw.] [No] (nO): Not assigned [LI1] (LI1) [...] (...): See the assignment conditions on page 94. <br> If the state of the input or bit assigned is at 1 , the limit switches will be deactivated. If, at this time, the drive was stopped or being slowed down via limit switches, it will restart up to its speed reference. |


| Code | Name/Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
|  | [POSITIONING BY SENSORS] (suite) |  |
| PR5 | - [Type of stop] | [Ramp stop] (rMP) |
| r $\quad$ P F 5t n5t | [Ramp stop] (rMP): On ramp[Fast stop] (FSt): Fast stop (ramp time reduced by [Ramp divider] (dCF), see page $\qquad$[Freewheel] (nSt): Freewheel stop |  |
| d 5 F | [Deceleration type] | [NO] (Std) |
| 5td | [NO] (Std): Uses the [Deceleration] (dEC) or [Deceleration 2] (dE2) ramp (depending on which has been enabled). <br> $\square$ [YES] (OPt): The ramp time is calculated on the basis of the actual speed when the slow down contact switches, in order to limit the operating time at low speed (optimization of the cycle time: the slow down time is constant regardless of the initial speed). |  |

## Parameter set switching [PARAMETER SET SWITCH.]

A set of 1 to 15 parameters can be selected in the [1.3 SETTINGS] (SEt-) menu, to which 2 or 3 different values can be assigned. These 2 or 3 sets of values can be switched using 1 or 2 logic inputs or control word bits. This switching can be performed during operation (motor running).

|  | Values 1 | Values 2 | Values 3 |
| :---: | :---: | :---: | :---: |
| Parameter 1 | Parameter 1 | Parameter 1 | Parameter 1 |
| Parameter 2 | Parameter 2 | Parameter 2 | Parameter 2 |
| Parameter 3 | Parameter 3 | Parameter 3 | Parameter 4 |
| Parameter 4 | Parameter 4 | Parameter 5 |  |
| Parameter 5 | Parameter 5 | Parameter 4 | Parameter 6 |
| Parameter 6 | Parameter 6 | Parameter 6 | Parameter 7 |
| Parameter 7 | Parameter 7 | Parameter 7 | Parameter 9 |
| Parameter 9 | Parameter 8 | Parameter 8 | Parameter 10 |
| Parameter 10 | Parameter 9 | Parameter 10 | Parameter 11 |
| Parameter 11 | Parameter 10 | Parameter 11 | Parameter 13 |
| Parameter 12 | Parameter 11 | Parameter 12 | Parameter 14 |
| Parameter 14 | Parameter 12 | Parameter 14 | Parameter 15 |
| Parameter 15 | Parameter 13 | Parameter 15 | or 1 |
| Parameter 14 |  | 1 |  |
| Parameter 15 | 0 | 0 | 1 |
| Input Ll or bit |  |  |  |

These parameters can no longer be modified in the [1.3 SETTINGS] (SEt-) menu. Any modifications made in the [1.3 SETTINGS] (SEt-) menu will be lost the next time the power supply is disconnected. Parameter settings can be made during operation in the [PARAMETER SET SWITCH.] (MLP-) menu, in relation to the active configuration.

Note: Parameter set switching cannot be configured on the integrated display terminal.
Parameters can simply be adjusted on the integrated display terminal if the function has been configured in advance using the graphic display terminal, PowerSuite or serial link. If the function has not been configured, the MLP- menu and its parameters SEt1, SEt2, SEt3 will not appear.

| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| ПLP - | [PARAMETER SET SWITCH.] |
| [ H \% I | [2 parameter sets] [No]: Function inactive. [LI1] [...]: See the assignment conditions on page 94. <br> Switching 2 parameter sets |
| [ H 己 | $\square$ [3 parameter sets] [No]: Function inactive. [LI1] [...]: See the assignment conditions on page 94. <br> Switching 3 parameter sets <br> Note: In order to obtain 3 parameter sets, [2 parameter sets] must also be configured. |
| $5 P 5$ | [PARAMETER SELECTION] <br> The parameter can be accessed if [2 parameter sets] or [3 parameter sets] is set to a value other than [No]. Making an entry in this parameter opens a window containing all the adjustment parameters that can be accessed. <br> With graphic display terminal: Select 1 to 15 parameters by pressing ENT or the Select button (a tick will appear after the selections) or deselect by pressing ESC. <br> Example: |
| 5EE1 | [SET 1] <br> The parameter can be accessed if at least 1 parameter has been selected in [PARAMETER SELECTION]. Making an entry in this parameter opens a settings window containing the selected parameters in the order in which they were selected. <br> With graphic display terminal: <br> With integrated display terminal: <br> Proceed as in the settings menu using the parameters that appear. |

## Code $\quad$ Name／Description <br> Adjustment range <br> Factory setting

## ［PARAMETER SET SWITCH．］（continued）

5Eヒ 己

## ［SET 2］

The parameter can be accessed if at least 1 parameter has been selected in［PARAMETER SELECTION］． Procedure identical to［SET 1］（SEt1）．

5Eヒヨ

## ［SET 3］

The parameter can be accessed if［3 parameter sets］is set to a value other than［ No ］and if at least 1 parameter has been selected in［PARAMETER SELECTION］． Procedure identical to［SET 1］（SEt1）．

We recommend that a parameter set switching test is carried out on stopping and a check is made to ensure that it has been performed correctly．
Some parameters are actually interdependent and in this case may be written at the time of switching．
Interdependencies between parameters must be respected，even between different sets．
Example：All［Low speed］（LSP）settings must be lower than all［High speed］（HSP）settings．

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Motor or configuration switching [MULTIMOTORS/CONFIG.]

The drive may contain up to 3 configurations, which can be saved using the [1.12 FACTORY SETTINGS] (FCS-) menu, page 188. Each of these configurations can be activated remotely, supporting adaptation to:

- 2 or 3 different motors or mechanical systems (multimotor mode)
- 2 or 3 different configurations for a single motor (multiconfiguration mode)

The two switching modes cannot be combined
The following conditions MUST be observed:

- Switching may only take place when stopped (drive locked). If a switching request is sent during operation, it will not be executed until the next stop
- In the event of motor switching, the following additional conditions apply:
- When the motors are switched, the associated power and control terminals must also be switched as appropriate.
- The maximum power of the drive must not be exceeded by any of the motors.


## Menu and parameters switched in multimotor mode

- [1.3 SETTINGS] (SEt-)
- [1.4 MOTOR CONTROL] (drC-)
- [1.5 INPUTS / OUTPUTS CFG] (I-O-)
- [1.6 COMMAND] (CtL-)
- [1.7 APPLICATION FUNCT.] (FUn-) with the exception of the [MULTIMOTORS/CONFIG.] function (to be configured once only)
- [1.8 FAULT MANAGEMENT] (FLt)
- [1.13 USER MENU] ( )
- [USER CONF.] ( ). The name of the configuration specified by the user in the [1.12 FACTORY SETTINGS] (FCS-) menu.


## Menu and parameters switched in multiconfiguration mode

As multimotor mode, with the exception of the motor parameters in the [1.4 MOTOR CONTROL] (drC-) menu, which are common to three configurations:

- Rated current
- Thermal current
- Rated voltage
- Rated frequency
- Rated speed
- Rated power
- IR compensation
- Slip compensation
- Type of thermal protection
- Thermal state
- Auto-tuning parameters


## Note:

No other menus or parameters can be switched.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Switching command

Depending on the number of motors or selected configuration (2 or 3), the switching command is sent using one or two logic inputs. The table below lists the possible combinations.

| LI <br> 2 motors or configurations | LI <br> 3 motors or configurations | Number of configuration <br> or active motor |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 1 | 0 | 2 |
| 0 | 1 | 3 |
| 1 | 1 | 3 |

## Schematic diagram for multimotor mode

Configuration 0 if the 2 contacts are open


## Auto-tuning in multimotor mode

This auto-tuning can be performed:

- Manually using a logic input when the motor changes
- Automatically each time the motor is activated for the $1^{\text {st }}$ time following drive power up, if the [Auto tuning] (tUn) parameter = [Power on] (POn).


## Motor thermal states in multimotor mode:

The drive protects the three motors individually. Each thermal state takes into account all stop times, including drive shutdowns.
It is therefore not necessary to perform auto-tuning every time the power is switched on. It is sufficient to auto-tune each motor at least once.

## Output of configuration information

In the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu, a logic output can be assigned to each configuration or motor (2 or 3) for remote information transmission.

## Warning:

As the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu is switched, these outputs must be assigned in all configurations in which information is required.


## [1.7 - APPLICATION FUNCT.] (FUn-)

## Traverse control

Function for winding spools of thread (in textile applications)


The cam speed of rotation must follow a precise profile to ensure that the spool is steady, compact and linear:


When the function is configured ([Yarn control] (trC) is set to a value other than $[\mathrm{No}](\mathrm{nO})$ ), the ramp type is forced to linear.

The function starts when the drive has reached its base reference and the traverse control command has been enabled.
When the traverse control command is disabled, the drive returns to its base reference, following the ramp determined by the traverse control function. The function then stops, as soon as it has returned to this reference.
Bit 15 of word LRS1 is at 1 while the function is active.

## [1.7 - APPLICATION FUNCT.] (FUn-)

## Function parameters:

They define the cycle of frequency variations around the base reference, as shown in the figure below:


- trC: [Yarn control]: Assignment of the traverse control command to a logic input or to a communication bus control word bit
- tdn: [decel. traverse control] time, in seconds
- tUP: [accel. traverse control] time, in seconds
- trH: [traverse high], in Hertz
- trL: [traverse low], in Hertz
- qSH: [Quick step High], in Hertz
- qSL: [Quick step Low], in Hertz


## Spool parameters:

- tbO: [Spool time]: Time taken to make a spool, in minutes.

This parameter is intended to signal the end of winding. When the traverse control operating time since command trC reaches the value of tbO, the logic output or one of the relays changes to state 1, if the corresponding function EbO has been assigned.
The traverse control operating time EbOt can be monitored online by a communication bus and in the Display menu.

- dtF: [Ref. delta]: Decrease in the base reference.

In certain cases, it is necessary to reduce the base reference as and when the spool increases in size. The value dtF corresponds to the time tbO. Once this time has elapsed, the reference continues to fall, following the same ramp. If low speed LSP is at 0 , the speed reaches 0 Hz , the drive stops and must be reset by a new run command. If low speed LSP is anything but 0 , the traverse control function continues to operate above LSP.



## [1.7 - APPLICATION FUNCT.] (FUn-)

- rtr: [Init traverse control]: Reinitialize traverse control.

This command can be assigned to a logic input or to a communication bus control word bit. It resets the EbO alarm and the EbOt operating time to zero and reinitializes the reference to the base reference. As long as rtr remains at 1 the traverse control function is inhibited and the speed remains the same as the base reference.
This command is mainly used when changing spools.


## [1.7 - APPLICATION FUNCT.] (FUn-)

## Counter wobble



The "Counter wobble" function is used, in certain applications, to obtain a constant thread tension when the Traverse control function causes significant variations in speed on the thread guide motor (trH and trL see page 168)
Two special "Traverse control" drives must be used (a master and a slave).
The master controls the speed of the thread guide, the slave controls the winding speed. The function gives the slave a speed ratio in anti-phase with that of the master. A synchronization operation is therefore necessary, using a master logic output and a slave logic input.


## [1.7 - APPLICATION FUNCT.] (FUn-)

## Connecting the synchronization I/O



The starting conditions for the function are:

- Base speeds of both drives reached
- [Yarn control] (trC) input activated
- Synchronization signal present

Note: On the slave drive, the [Quick step High] (qSH) and [Quick step Low] (qSL) should generally be left at zero.


[^2]

| Code | Name/Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| - 1r - | - [CMD SWITCHING] |  |
| - Ir $\left.\begin{array}{ccc}  & n & \square \\ y & E & 5 \\ L & 1 & 1 \\ L & - \\ & - \\ & - \end{array} \right\rvert\,$ | [Cmd switching] [No] (nO) : Operation with non-reversible unit [Yes] (YES) : Operation with reversible unit [LII] (LI1) [...] (...): See the assignment conditions on page 94. <br> If the state of the input or bit assigned is at 0 , operation is with a non-reversible unit. If the state of the input or bit assigned is at 1 , operation is with a reversible unit. | [ No ] ( nO ) |

## [1.8 - FAULT MANAGEMENT] (FLt-)

## PTC probes

3 sets of PTC probes can be managed by the drive in order to protect the motors:

- 1 on logic input LI6 transformed for this application with an "LI6" switch on the control card.
- 1 on each of the 2 option cards

Each of these two sets of PTC probes is monitored for the following faults:

- Motor overheating
- Sensor break fault
- Sensor short-circuit fault

Protection via PTC probes does not disable protection via $I^{2} t$ calculation performed by the drive (the two types of protection can be combined).


| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| Atr - | [AUTOMATIC RESTART] |
| Atr nロ YES | [Automatic restart] [No] (nO): Function inactive <br> $\square$ [Yes] (YES): Automatic restart, after locking on a fault, if the fault has disappeared and the other operating conditions permit the restart. The restart is performed by a series of automatic attempts separated by increasingly longer waiting periods: $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$, then 1 min for the following periods. <br> The drive fault relay remains activated if this function is active. The speed reference and the operating direction must be maintained. <br> Use 2-wire control ([2/3 wire control] $(\mathrm{tCC})=[2$ wire] (2C) and [2 wire type] (tCt) $=[$ Level] (LEL), see page 65). <br> $\triangle$ <br> Check that an accidental start does not endanger personnel or equipment, in any way. <br> If the restart has not taken place once the configurable time tAr has elapsed, the procedure is aborted and the drive remains locked until it is powered down then powered up. <br> The following faults permit this function: <br> - External fault (EPF) <br> - Loss of 4-20 mA reference (LFF) <br> - CANopen fault (COF) <br> - Mains overvoltage (OSF) <br> - Input phase loss (PHF) <br> - Output phase loss (OPF) <br> - DC bus overvoltage (ObF) <br> - Motor overload (OLF) <br> - Serial link (SLF) <br> - Drive overheating (OHF) <br> - Communication (COF) <br> - PTC probes (OtF) <br> - Torque limitation (SSF) |
|  | [max time restart] [5 minutes] (5): 5 minutes [10 minutes] (10): 10 minutes [30 minutes] (30): 30 minutes [1 hour] (1h): 1 hour [2 hours] (2h): 2 hours [3 hours] (3h): 3 hours [Unlimited] (Ct): Unlimited <br> This parameter appears if [Automatic restart] (Atr) $=$ [Yes] (YES). It can be used to limit the number of consecutive restarts on a recurrent fault. |



## Motor thermal protection

## Function:

Thermal protection by calculating the $I^{2} \mathrm{t}$.

$\triangle$
Caution: The memory of the motor thermal state returns to zero when the drive control is disconnected.

- Naturally-cooled motors:

The tripping curves depend on the motor frequency

- Force-cooled motors:

Only the 50 Hz tripping curve needs to be considered, regardless of the motor frequency.


| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {Factory setting }}$ |
| :---: | :---: |
| EHE - | [ [MOTOR THERMAL PROT.] |
| $\begin{aligned} \text { EHE } \\ \\ n \square \\ \text { ACL } \\ \text { F }[L \end{aligned}$ | $\square$ [Type Protect. Mot] [No] (nO): No protection. [Self cooled] (ACL): For self-cooled motors [Force-cooled] (FCL): For force-cooled motors |
| ヒヒd | [Motor therm. level] <br> Trip threshold for motor thermal alarm (logic output or relay) <br> Note: A fault trip will occur when the thermal state reaches $118 \%$ of the rated state and reclosing will occur when the state falls back below $100 \%$. |
| $\square L L$ $\begin{aligned} & \because 5 t \\ & \angle F F \\ & r L 5 \\ & r \Pi F \\ & F 5 E \end{aligned}$ | [Overload fault mgt] <br> Type of stop in the event of a thermal motor fault [Freewheel] (nSt): Freewheel stop [Fallbck spd] (LFF): Switch to fallback speed [Spd maint.] (rLS): The drive maintains the speed at the time the fault occurred. [Ramp stop] (rMP): Stop on ramp [Fast stop] (FSt): Fast stop |
| DPL - | - [OUTPUT PHASE LOSS] |
| $\begin{array}{r} \triangle P L \\ \cap \square \\ \text { YES } \\ \text { } \begin{array}{l} \text { QA } \end{array} \end{array}$ | [Output Phase Loss] [No] (nO): Function inactive. [Yes] (YES): Triggering of OPF fault [Output cut] (OAC): No fault triggered but management of the output voltage in order to avoid an overcurrent when the link with the motor is re-established and flying restart (even if this function has not been configured). <br> Note: [Output Phase Loss] (OPL) is forced to [Yes] (YES) if brake logic control has been configured (see page 126). |
| Ddt | [OPF det. time] <br> Time delay for taking into account of [Output Phase Loss] (OPL) fault |
| IPL - | - [INPUT PHASE LOSS] |
| $\begin{aligned} & I P L \\ & \cap \square \\ & \text { YES } \end{aligned}$ | [Input phase loss] <br> $\square$ [No] (nO): Fault ignored [Yes] (YES): Fault, with freewheel stop. <br> This configuration can only be accessed on 3-phase drives. <br> If one phase is lost, the drive will trip with an [Input phase loss] (IPL) fault. However, if 2 or 3 phases are lost, the drive will continue to operate until it trips with an undervoltage fault. |

## [1.8 - FAULT MANAGEMENT] (FLt-)

## Drive thermal protection

## Functions:

Thermal protection by PTC probe fitted on the heatsink or integrated in the power module.
Indirect protection of the drive against overloads by tripping in the event of an overcurrent. Typical tripping points:

- Motor current = $185 \%$ of rated drive current: 2 seconds
- Motor current $=150 \%$ of rated drive current: 60 seconds



## Drive ventilation

The fan starts up when the drive is powered up then shuts down after 10 seconds if a run command has not been received.
The fan is powered automatically when the drive is unlocked (operating direction + reference). It is powered down a few seconds after the drive is locked (motor speed $<0.2 \mathrm{~Hz}$ and injection braking completed).

\begin{tabular}{|c|c|c|}
\hline Code \& Name/Description ${ }^{\text {a }}$ ( Adjustment range \& Factory setting <br>
\hline $\square H L$ - \& \multicolumn{2}{|l|}{- [DRIVE OVERHEAT]} <br>
\hline $\square \mathrm{HL}$ \& $\square$ [Drive overheat] \& [Freewheel] (nSt) <br>
\hline \[
$$
\begin{aligned}
& n 0 \\
& n 5 t \\
& L F F \\
& \text { rL5 } \\
& \text { r } \Pi P \\
& F 5 t
\end{aligned}
$$

\] \& \begin{tabular}{l}
Behavior in the event of the drive overheating

<br>
[ No ] (nO): Fault ignored <br>
[Freewheel] ( nSt ): Freewheel stop.
[Fallbck spd] (LFF): Switch to fallback speed
[Spd maint.] (rLS): The drive maintains the speed at the time the fault occurred.
[Ramp stop] (rMP): Stop on ramp
[Fast stop] (FSt): Fast stop
\end{tabular} \& <br>

\hline \multirow[t]{2}{*}{EHA} \& $\square\left[A I .{ }^{\circ} \mathrm{C}\right.$ ATV] ${ }^{\square} \mathrm{l}$ ] to 118\% \& 100\% <br>

\hline \& \multicolumn{2}{|l|}{| Trip threshold for drive thermal alarm (logic output or relay) |
| :--- |
| Note: A fault trip will occur when the thermal state reaches $118 \%$ of the rated state and reclosing will occur when the state falls back below $\mathrm{x} \%$. |} <br>

\hline Et F - \& \multicolumn{2}{|l|}{- [EXTERNAL FAULT]} <br>
\hline Et F \& $\square$ [Ext. fault assign.] \& [ No ] (nO) <br>

\hline $$
\left.\begin{array}{lll}
n & \square \\
L & 1 & 1
\end{array} \right\rvert\,
$$ \& [ No ] ( nO ): Function inactive.

[LI1] (LI1) \& <br>
\hline  \& [...] (...): See the assignment conditions on page 94. No external fault if the state of the input or bit assigned is at 0 . External fault if the state of the input or bit assigned is at 1. \& <br>
\hline $E P L$ \& $\square$ [External fault mgt] \& [Freewheel] (nSt) <br>

\hline $$
\begin{aligned}
& n 5 t \\
& L F F \\
& \text { rL5 } \\
& \text { r } \Pi P \\
& \text { F5t }
\end{aligned}
$$ \& Type of stop in the event of an external fault

[Freewheel] (nSt): Freewheel stop
[Fallbck spd] (LFF): Switch to fallback speed
[Spd maint.] (rLS): The drive maintains the speed at the time the fault occurred.
[Ramp stop] (rMP): Stop on ramp
[Fast stop] (FSt): Fast stop \& <br>
\hline
\end{tabular}

| Code | Name／Description |  | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: | :---: |
| U5b－ | －［UNDERVOLTAGE（USF）］ |  |  |  |
| $\begin{array}{ll}\text { U5b } & \\ & \\ & 1 \\ & \\ & \\ & \end{array}$ | $\square$［UndervoItage mgt］ <br> Behavior of the drive in the event of an und ［Flt\＆R1open］（0）：Fault and fault rela ［FIt\＆R1close］（1）：Fault and fault relay ［Alarm］（2）：Alarm and fault relay rema | dervoltage open． <br> closed． <br> ins closed．Th | may be assigned | ［FIt\＆R1open］（0） <br> logic output or a |
| $\square 5 L$ | －Setting for the level at which the undervoltage fault will be tripped | ATV71ee๑M3 | nn to nn V | nn V |
|  |  | ATV71eeeM4 | $n \mathrm{n}$ to nn V | nn V |
|  |  | ATV71eeeS6x | $n \mathrm{n}$ to $n \mathrm{n} V$ | nn V |
| U5t | $\square$［Undervolt．time out］ <br> Time delay for taking into account of undervoltage fault |  | 0.00 s to 10.00 s | 0.20 s |
| $51 P$ | $\square$［UnderV．prevention］ |  |  | ［ No ］（nO） |
| $U P L$ | $\square$［Prev．level］ <br> Setting for undervoltage fault prevention level，if［UnderV．prevention］（StP）is set to a value other than $[\mathrm{No}](\mathrm{nO})$ ． | ATV71•e๑M3 | $n \mathrm{n}$ to nn V | nn V |
|  |  | ATV71•eөM4 | $n \mathrm{n}$ to $n \mathrm{n} V$ | nn V |
|  |  | ATV71eeeS6x | nn to nn V | nn V |
| 5ヒワ | $\square$［Max stop time］ |  | 0 to 655.35 s | 0.00 s |
|  | Ramp time if［UnderV．prevention］（StP）$=$［Ramp stop］（rMP）． |  |  |  |
| ヒロ5 | $\square$［DC bus maintain tm］ |  | 0 to 655.35 s | 0.00 s |
|  | Ramp time if［UnderV．prevention］（StP）$=$［DC maintain］（MMS）． |  |  |  |
| EIt－ | －［IGBT TESTS］ |  |  |  |
| $\begin{array}{r} \text { 5trt } \\ \text { пロ } \\ \text { YES } \end{array}$ | $\square$［IGBT tests］ |  |  | ［ No ］（ nO ） |
|  | ［Yes］（YES）：The IGBTs are tested on power up and every time a run command is sent．These tests cause a slight delay（approx．？？ms）．In the event of a fault，the drive will lock．The following faults can be detected： <br> －Drive output short－circuit（terminals U－V－W）：SCF display <br> －IGBT faulty：xtF，where $x$ indicates the number of the IGBT concerned <br> －IGBT short－circuited：x2F，where $x$ indicates the number of the IGBT concerned |  |  |  |



| Code | Name／Description ${ }^{\text {a }}$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| ［ पF－ | －［COM．FAULT MANAGEMENT］ |  |
| ［ L L | $\square$［Network fault mgt］ | ［ No ］（nO） |
| nu H $5 t$ LFF rLS r M P F $5 t$ | Behavior of the drive in the event of a communication fault on a communication card ［No］（nO）：No stop <br> ［Freewheel］（nSt）：Freewheel stop <br> ［Fallbck spd］（LFF）：Switch to fallback speed <br> ［Spd maint．］（rLS）：The drive maintains the speed at the time the fault occurred． <br> ［Ramp stop］（rMP）：Stop on ramp <br> ［Fast stop］（FSt）：Fast stop |  |
| ᄃ प L | $\square$［CANopen fault mgt］ | ［ No ］（nO） |
|  | Behavior of the drive in the event of a communication fault with CANopen［No］（nO）：No stop［Freewheel］（nSt）：Freewheel stop［Fallbck spd］（LFF）：Switch to fallback speed［Spd maint．］（rLS）：The drive maintains the speed at the time the fault occurred．［Ramp stop］（rMP）：Stop on ramp［Fast stop］（FSt）：Fast stop |  |
| ヒヒロ | $\square$［Modbus 0.1 to 10.0 s <br> time out］  | 10.0 s |
|  | Configuration time out |  |
| $5 L L$ | $\square$［Modbus fault mgt］ | ［ No ］（nO） |
|  | Behavior of the drive in the event of a communication fault with Modbus ［No］（nO）：No stop ［Freewheel］（nSt）：Freewheel stop ［Fallbck spd］（LFF）：Switch to fallback speed ［Spd maint．］（rLS）：The drive maintains the speed at the time the fault occurred． ［Ramp stop］（rMP）：Stop on ramp ［Fast stop］（FSt）：Fast stop |  |


| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $5 d d-$ | [ENCODER FAULT] <br> Can be accessed if the option card has been inserted and the encoder is used for speed feedback (see page xx ). |  |  |
|  | $\square$ [Load slip. detect.] [No] (nO): Fault not monitored. Only the alarm may be ass [Yes] (YES): Fault monitored. <br> The fault is triggered by comparison with the ramp output a speeds greater than $10 \%$ of the [High speed] (HSP), see pa In the event of a fault, the drive switches to freewheel stop configured, the brake control is set to 0 . | signed to a logic output nd speed feedback a age $x$. and if the brake logic | [Yes] (YES) <br> or a relay. <br> is only effective for <br> ntrol function has been |
| E [ | $\square$ [Encoder coupling] [ No ] ( nO ): Fault not monitored. Only the alarm may be ass [Yes] (YES): Fault monitored. <br> If the brake logic control function has been configured, the The fault monitored is the break in the mechanical encoder In the event of a fault, the drive switches to freewheel stop configured, the brake control is set to 0 . | signed to a logic outpu <br> factory setting chang coupling. and if the brake logic | [ No ] (nO) <br> r a relay. <br> to [Yes] (YES). <br> ntrol function has been |
| E [ | Encoder faults filtering time |  |  |
| tld- | - [TORQUE OR ILIM. DETECT.] |  |  |
| $55 月$ | $\square$ [Torque or I lim. detect.] |  | [ No ] ( nO ) |
| $\square \square$ | Behavior in the event of switching to torque or current limita [No] (nO): Fault ignored [Alarm] (xx): Alarm. The alarm may be assigned to a logi [Fault] (xx): Switch to "Limitation" fault (SSF) | ation <br> c output or a relay | age 77). |
| $5 セ \square$ | [Trq/I limit. time out] | 0.00 s to 10.00 s | 00.0 s |
|  | (If fault has been configured.) <br> Time delay for taking into account of SSF "Limitation" fault |  |  |
| 556 | $\square$ [Trq/I limit. stop] |  | [Freewheel] (nSt) |
| $\begin{aligned} & n 5 t \\ & r \Pi P \\ & \text { F } 5 t \end{aligned}$ | (If fault has been configured.)[Freewheel] (nSt): Freewheel stop[Ramp stop] (rMP): Stop on ramp[Fast stop] (FSt): Fast stop |  |  |



## [1.9 - COMMUNICATION] (COM-)

RUN Term $\quad+50.00 \mathrm{~Hz} 1250 \mathrm{~A}$
1.9 COMMUNICATION

COM. SCANNER INPUT
COM. SCANNER OUTPUT
MODBUS HMI
MODBUS NETWORK
CANopen

| Code | $\ll$ | $\gg$ | Quick |
| :--- | :--- | :--- | :--- |

FORCED TO LOCAL

## ［1．9－COMMUNICATION］（COM－）

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| －1［5 | －［COM．SCANNER INPUT］ |  |  |
| пПค । | $\square$［Scan．IN1 address］ <br> Address of the $1^{\text {st }}$ input word |  |  |
| пПА己 | $\square$［Scan．IN2 address］ <br> Address of the $2^{\text {nd }}$ input word |  |  |
| пПคヨ | $\square$［Scan．IN3 address］ <br> Address of the $3^{\text {rd }}$ input word |  |  |
| п П月4 | $\square$［Scan．IN4 address］ <br> Address of the $4^{\text {th }}$ input word |  |  |
| п П 5 | $\square$［Scan．IN5 address］ <br> Address of the $5^{\text {th }}$ input word |  |  |
| п ПАв | $\square$［Scan．IN6 address］ <br> Address of the $6^{\text {th }}$ input word |  |  |
| п П 7 | $\square$［Scan．IN7 address］ <br> Address of the $7^{\text {th }}$ input word |  |  |
| ппА日 | －［Scan．IN8 address］ <br> Address of the $8^{\text {th }}$ input word |  |  |
| －［5－ | －［COM．SCANNER OUTPUT］ |  |  |
|  | $\square$［Scan．Out1 address］ <br> Address of the $1^{\text {st }}$ output word |  |  |
| п¢月 | $\square$［Scan．Out2 address］ <br> Address of the $2^{\text {nd }}$ output word |  |  |
| п「月ヨ | $\square$［Scan．Out3 address］ <br> Address of the $3^{\text {rd }}$ output word |  |  |
| n［月4 | $\square$［Scan．Out4 address］ <br> Address of the $4^{\text {th }}$ output word |  |  |
| n 5 月 5 | $\square$［Scan．Out5 address］ <br> Address of the $5^{\text {th }}$ output word |  |  |
| п 5 月号 | $\square$［Scan．Out6 address］ <br> Address of the $6^{\text {th }}$ output word |  |  |
| n［月7 | $\square$［Scan．Out7 address］ <br> Address of the $7^{\text {th }}$ output word |  |  |
| n［月日 | $\square$［Scan．Out8 address］ <br> Address of the $8^{\text {th }}$ output word |  |  |

## [1.9-COMMUNICATION] (COM-)



## [1.11 - IDENTIFICATION]



The [1.11-IDENTIFICATION] menu can only be accessed on the graphic display terminal. This is a read-only menu that cannot be configured. It enables the following information to be displayed:

- Drive reference, power rating and voltage
- Drive software version
- Drive serial number
- Type of options available, with their software version and serial number


## [1.12 - FACTORY SETTINGS] (Fst-)

The [1.12 - FACTORY SETTINGS] (Fst-) menu can be used to replace the current configuration with the factory configuration or a configuration saved previously.

All or part of the current configuration can be replaced: Select a group of parameters in order to select the menus you wish to load with the selected source configuration.


Selection of source configuration


Selection of menus to be replaced

Command to return to "factory settings"


| Code | Name/Description |
| :---: | :---: |
| F[5 1 | [Config. Source] <br> Selection of source configuration [Macro-Config] (???) Factory configuration, return to selected macro-configuration. [Configuration 1] (???) [Configuration 2] (???) <br> If the configuration switching function has been configured, it will not be possible to access [Configuration 1] (???) and [Configuration 2] (???). |
| Fry | - [Parameter group list] <br> Selection of menus to be loaded [AII] (???) [Drive menu] (???) [Settings] (???) [Motor control] (???) [Communication] (???) [Prog. card] (???) [Monitoring config.] (???) [Display config.] (???) |
| $\text { LF } 5$ $\begin{array}{r} n \square \\ Y E S \end{array}$ | [Goto factory settings] [No] (nO) [Yes] (YES) The parameter changes back to [ No ] ( nO ) automatically as soon as the operation is complete. |
| $5[5$ $5 \operatorname{tr} 2$ | [Save conf.] [No] (nO) [Config. 0] (Stro) [Config. 1] (Str1) [Config. 2] (Str2) <br> The active configuration to be saved does not appear for selection. For example, if you wish to save [Conf. 0] (Str0), only [Conf. 1] (Str1) and [Conf. 2] (Str2) will appear. The parameter changes back to [ No ] (nO) automatically as soon as the operation is complete. |

## [1.13 - USER MENU]

This menu can only be accessed with the graphic display terminal. It contains the parameters selected in the [DISPLAY CONFIG.] menu on page 196.

Please refer to the documentation specific to the programmable card.

## [3. OPEN / SAVE AS]

This menu can only be accessed with the graphic display terminal.

| RDY | Term | +0.00 Hz | 0 A |
| :--- | :--- | :--- | :--- |
| 3. OPEN / SAVE AS |  |  |  |
| OPEN <br> SAVE AS |  |  |  |
|  |  |  |  |
| Code | $\ll$ | $\gg$ | Quick |

[OPEN] : To download one of the 4 files from the graphic display terminal to the drive.
[SAVE AS]: To download the current configuration from the drive to the graphic display terminal.

## [3. OPEN / SAVE AS]

Name/Description

## [OPEN]

## - [Open file]

$\square$ [1]
$\square$ [2]
$\square$ [3]

- [4]

Opens a file stored on the graphic display terminal in order to download it to the drive connected to the terminal.
$\square$ [Parameter group list]
$\square$ [AII] : All parameters
$\square$ [Drive] : Motor parameters only (menu: 1.4 MOTOR CONTROL).
$\square$ [Communication] : Communication parameters (menu: 1.9 COMMUNICATION).

## $\square$ [Download]

$\square$ [No]
$\square$ [Yes]: The parameters selected with [Parameter group list] in the selected file are downloaded to the current drive configuration.
Note:

- A message appears prompting you to check that the drive wiring is compatible with the configuration before confirming the download.
- A warning message will appear if the configuration is incompatible with the drive rating or its hardware configuration (option cards).


## [SAVE AS]

- [To file]
$\square$ [No]
$\square$ [1]
$\square$ [2]
$\square$ [3]
- [4]

Selects the file on the graphic display terminal to which the current drive configuration is to be downloaded.

- [Download]
$\square$ [No]
$\square$ [Yes]: Downloads the current drive configuration to the selected file on the display terminal.


## [4. PASSWORD] (COd-)

Enables the configuration to be protected with an access code or a password to be entered in order to access a protected configuration.
Example:


- The drive is unlocked when the PIN codes are at 0 (no password) or if the correct code has been entered.
- Before protecting the configuration with an access code, you must:
- Define the upload [Upload rights] (xx) and download [Download rights] (xx) rights
- Make a careful note of the code and keep it in a safe place where you will always be able to find it
- The drive has 2 access codes, enabling 2 access levels to be set up.
- PIN code 1 is an unlock code: 6969. Those in possession of this document will of course already be aware of this code.
- PIN code 2 is an unlock code known only to Schneider Electric Product Support.

Note: When the unlock code is entered, the user access code appears.
The following items are access-protected:

- Return to factory settings (menu [1.12 FACTORY SETTINGS] (FCS-).
- The channels and parameters protected by the [1.13 USER MENU] ( xx ) menu, as well as the menu itself.
- The custom display settings (menu [6. DISPLAY CONFIG.]).

| Code | Name/Description ${ }^{\text {adjustment range }}$ | Factory setting |
| :---: | :---: | :---: |
| [5t | [Status][Not locked] (xx)[Locked] (xx) |  |
| [口d | $\square$ [PIN code 1] <br> 0 to 9999 <br> $1^{\text {st }}$ access code. The value 0000 indicates that a password has not been set. The value the drive is protected and an access code must be entered in order to unlock it. Once the entered, it remains on the display and the drive is unlocked until the next time the powe | $0000$ <br> **** indicates that correct code has been supply is disconnected. |
| [0d己 | $\square$ [PIN code 2] <br> $2^{\text {nd }}$ access code. The value 0000 indicates that a password has not been set. The value the drive is protected and an access code must be entered in order to unlock it. Once th entered, it remains on the display and the drive is unlocked until the next time the powe | 0000 <br> **** indicates that correct code has been supply is disconnected. |
| ULr | [Upload rights] <br> (read or copy current configuration to drive) [not allowed] (xxx): The current drive configuration can only be uploaded to the grap PowerSuite if the drive is not protected by an access code or if the correct code is en [Allowed] (xxx): The current drive configuration can always be uploaded to the gra PowerSuite. | hic display terminal or red. <br> hic display terminal or |
| $d L r$ | [Download rights] <br> (writes the current configuration to the drive or downloads a configuration to the drive) <br> - [Locked drv] (xxx): A configuration file can only be downloaded to the drive if the access code, which is the same as the access code for the configuration to be downl <br> $\square$ [Unlock. drv] (xxx): A configuration file can be downloaded to the drive or a config be modified if the drive is unlocked (access code entered) or is not protected by an a <br> $\square$ [Always] (xxx): Combination of [Locked drv] (xxx) and [Unlock. drv] (xxx). options | rive is protected by an aded. ration in the drive can cess code. |

## [6. DISPLAY CONFIG.]

This menu can only be accessed with the graphic display terminal. It can be used to customize parameters or a menu and to access parameters.

| Rdy | Term $\quad+0.00 \mathrm{~Hz}$ | 0 A |
| :--- | :---: | :---: | :---: |
| 6 DISPLAY CONFIG. |  |  |
| 6.1 USER PARAMETERS |  |  |
| 6.2 USER MENU    <br> 6.3 PARAMETER ACCESS    <br>     <br> Code $\ll$ $\gg$ Quick |  |  |

6.1 USER PARAMETERS: Customization of 1 to 15 parameters.
6.2 USER MENU: Creation of a customized menu.
6.3 PARAMETER ACCESS: Customization of the visibility of protection mechanisms for menus and parameters.

| RDY Term $\quad$ +0.00 Hz 0 A |
| :--- | :---: |
| User name |
| FLOW REFERENCE |
|  |
| Max. no. of characters 13 |
| ABC $\ll \quad \gg$ |

Names (USER MENU NAME, DRIVE NAME, lines of messages, names of units, etc.) are customized as in the example of the parameter name shown opposite.
If no custom settings have been made, the default setting appears (names, units, etc.).
Display on 1 or 2 lines of characters
Use F1 to change to $A B C, a b c, 123,{ }^{*}[-$
Use the navigation selector switch to increment the character (alphabetical order) and << and >> to switch to the next or previous character respectively.

## Ramp increment

Acceleration
Loop Gain
Delete up down

Edit



Parameter list making up the user menu
Selection of parameters included in
the user menu

Use the F2 and F3 keys to arrange the parameters in the list (example below using F3).

| RDY | Term | +0.00 Hz |
| :--- | :---: | ---: |
| SELECTED LIST |  |  |
| Acceleration |  |  |
| Ramp increment |  |  |
| Loop Gain |  |  |
|  |  |  |
| Delete | up | down |



## [7. MONITORING CONFIG.]

This menu can only be accessed with the graphic display terminal.
It can be used to configure the information displayed on the graphic screen during operation.

[7.2. MONITOR SCREEN TYPE]: Selection of parameters displayed in the centre of the screen and the display mode (values in digital ol bar graph format).
[7.3. COM. MAP CONFIG.]: Selection of word displayed and its format.

## Internal drive variables

## Name/Description

## [PARAM. LINE SELECT.]

[Output frequency]in Hz
[Motor current] in A
[Avg speed]
[Motor speed]
[Motor voltage] in RPM: The parameter can be accessed if [ENA system] (EnA) $=[Y e s](Y E S)$ (see page 61)in RPM
[Motor power]
in $V$
[Mains voltage]
[DC bus voltage] in Vte] as a \%[Drv. thermal state]
[Consumption]
[Run time]
as a \%
[Power on time]
Select the parameter by pressing ENT or the Select button (an "x" will then appear after the parameter) or deselect it by pressing ESC.
1 or 2 parameters can be selected (the first 2 are fixed).
Example:


## Name/Description

## [MONITOR SCREEN TYPE]

## - [BAR GRAPH]

$\square$ [Bar graph no.]: Select 1 or 2.
$\square$ [PARAMETER SELECTION]

- [HMI Frequency ref.]
- [Output frequency]
- [Motor current]
- [Avg speed]
- [Motor speed]
- [Motor voltage]
- [Motor power]
- [Mains voltage]
- [DC bus voltage]
- [Motor thermal state]
- [Drv. thermal state]
- [PID reference]
- [PID feedback ass.]
- [PID error]
- [PID Output]
in Hz
in Hz
in $A$
in RPM: The parameter can be accessed if [ENA system] (EnA) = [Yes] (YES) (see page 61)
in RPM
in $V$
in W
in $V$
in $V$
as a \%
in Hz

Select the parameter or parameters by pressing ENT or the Select button (an "x" will then appear after the parameter) or deselect by pressing ESC

| RUN | Term | +35.00 Hz | 80 A |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| PARAMETER SELECTION |  |  |  |
| ----- |  |  |  |
| ---------x |  |  |  |
| Select | << | >> | Quick |

Examples:
2 bar graphs
1 bar graph

| RUN | Term | $+35.00 \mathrm{~Hz}$ | 80 A |
| :---: | :---: | :---: | :---: |
| Min | MOTOR SPEED |  | $x$ |
|  | 1250 rpm |  | 1500 |
|  |  |  |  |
| Min | MOTOR CURRENT |  | max |
| 0 | 80 A |  | 150 |
|  | $\xrightarrow{1}$ |  |  |
|  | << | >> | Quick |


| RUN | Term | $+35.00 \mathrm{~Hz}$ | 80 A |
| :---: | :---: | :---: | :---: |
| MOTOR SPEED |  |  |  |
| 1250 rpm |  |  |  |
| Min=0 |  | Max= | 1500 |
| << |  | >> | Quick |

## Name/Description

## [MONITOR SCREEN TYPE] (continued)

## - [DIGITAL VALUES]

[ [Dig. val. no.]: Select 1,2 or 5
$\square$ [PARAMETER SELECTION]

- [HMI Frequency ref.]
- [Output frequency]
- [Motor current]
- [Avg speed]
- [Motor speed]
- [Motor voltage]
- [Motor power]
- [Mains voltage]
- [DC bus voltage]
- [Motor thermal state]
- [Drv. thermal state]
- [Consumption]
- [Run time]
- [Power on time]
- [IGBT alarm counter]
- [PID reference]
- [PID feedback]
- [PID error]
- [PID Output]
- [Object 01]
- [Object 02]
- [Object 03]
- [Object 04]
- [Current config.]
- [Current param. set]
in Hz
in Hz
in A
in RPM: The parameter can be accessed if [ENA system] (EnA) = [Yes] (YES) (see page 61).
in RPM
in $V$
in W
in $V$
in $V$
as a \%
as a \%
in kWh
in hours (length of time the motor has been switched on)
in hours (length of time the drive has been switched on)
in seconds (length of time the "IGBT temperature" alarm has been active)
as a \%
as a \%
as a \%
in Hz
Word generated by the programmable card
CNFSO, 1 or 2 (see page $\underline{x x}$ )
SETO, 1 or 2 (see page $\underline{x x}$ )

Select the parameter or parameters by pressing ENT or the Select button (an "x" will then appear after the parameter) or deselect by pressing ESC.
Example:

| RUN | Term | $+35.00 \mathrm{~Hz}$ | 80 A |
| :---: | :---: | :---: | :---: |
| PARAMETER SELECTION |  |  |  |
| $\text { ---------x } x$ |  |  |  |
| --------- |  |  |  |
| - $x$ |  |  |  |
| Select | << | >> | Quick |

Display of 2 values

| RUN | Term +35.00 Hz | 80 A |
| :--- | :--- | :--- |
| MOTOR SPEED |  |  |
| 1250 rOm |  |  |
| MOTOR CURRENT |  |  |
| 80 A |  |  |
| $\ll$ | $\gg$ | Quick |

Display of 1 value

| RUN | Term | +35.00 Hz | 80 A |
| :--- | :--- | :--- | :--- |
| MOTOR SPEED |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Display of 5 values

| RUN | Term | +35.00 Hz $\quad 80 \mathrm{~A}$ |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| MONITORING SCREEN. |  |  |  |  |  |
| FREQUENCY REF | $: 50.1 \mathrm{~Hz}$ |  |  |  |  |
| CURRENT | $: 80 \mathrm{~A}$ |  |  |  |  |
| MOTOR SPEED | $: 1250 \mathrm{rpm}$ |  |  |  |  |
| MOTOR THERMAL | $: 80 \%$ |  |  |  |  |
| DRIVE THERMAL | $: 80 \%$ |  |  |  |  |
| $\ll$ |  |  |  | $\gg$ | Quick |

## [7. MONITORING CONFIG.]

## Name/Description

## [COM. MAP CONFIG.]

## - [Word selection]

Select the address of the word to be displayed (turn the navigation button).

## [Format]

ㅁ [Hexadecimal]
$\square$ [Decimal]
A confirmation screen appears:

| RUN | Term | +35.00 Hz | 80 A |
| :---: | :---: | :---: | :---: |
| WORD SELECTED |  |  |  |
|  | 3 | 4 |  |
|  |  |  |  |
|  | $\ll$ | $\gg$ | Quick |

You will be able to see the value of the selected word in the [COMMUNICATION MAP] menu, which is a sub-menu of the [1.3 DISPLAY] menu.
Example:

| RUN | Term | $+35.00 \mathrm{~Hz}$ | 80 A |
| :---: | :---: | :---: | :---: |
| COMMUNICATION MAPS |  |  |  |
| --------- |  |  |  |
| W3141: F230 Hex |  |  |  |
|  | << | >> | Quick |

Dialog can take place between a graphic display terminal and a number of drives connected on the same bus. The addresses of the drives must be configured in advance in the [1.9 COMMUNICATION] menu, page 184.

When a number of drives are connected to the same display terminal, the terminal automatically shows the following screens:


In multipoint mode, the command channel is not displayed. The status, the 2 selected parameters and the drive address appear.

## Service

The Altivar 71 does not require any preventative maintenance. It is nevertheless advisable to perform the following regularly:

- Check the condition and tightness of connections.
- Ensure that the temperature around the unit remains at an acceptable level and that ventilation is effective (average service life of fans: 3 to 5 years depending on the operating conditions).
- Remove any dust from the drive


## Assistance with maintenance, fault display

If a problem arises during setup or operation, ensure that the recommendations relating to the environment, mounting and connections have been observed.

The first fault detected is saved and displayed, and the drive locks.
The drive switching to fault mode can be indicated remotely via a logic output or a relay, which can be configured in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu, see e.g., [R1 CONFIGURATION] (r1-) on page 77.

## [1.10 DIAGNOSTICS] menu

This menu can only be accessed with the graphic display terminal. It displays faults and their cause in plain text and can be used to carry out tests, see page $x x$.

## Clearing the fault

Cut the power supply to the drive in the event of a non-resettable fault.
Wait for the display to go off completely.
Find the cause of the fault in order to correct it.
The drive is unlocked after a fault:

- By switching off the drive until the display disappears completely, then switching on again
- Automatically in the scenarios described for the [AUTOMATIC RESTART] (Atr-) function on page 173
- By means of a logic input or command bit assigned to the [FAULT RESET] (rSt-) function on page 172
- By pressing the STOP/RESET button on the graphic display terminal


## [1.2 MONITORING] (SUP-) menu:

This is used to prevent and find the causes of faults by displaying the drive status and its current values.
It can be accessed with the integrated display terminal.

## Spares and repairs:

Consult Schneider Electric Product Support.

## Drive does not start, no fault displayed

- If the display does not light up, check the power supply to the drive.
- The assignment of the "Fast stop" or "Freewheel stop" functions will prevent the drive from starting if the corresponding logic inputs are not powered up. The ATV71 then displays [Freewheel] (nSt) in freewheel stop and [Fast stop] (FSt) in fast stop. This is normal since these functions are active at zero so that the drive will be stopped safely if there is a wire break.
- Make sure that the run command input or inputs are activated in accordance with the selected control mode ([2/3 wire control] (tCC) and [2 wire type] (tCt) parameters), page 65.
- If an input is assigned to the limit switch function and this input is at zero, the drive can only be started up by sending a command for the opposite direction (see pages 120 and 153).
- If the reference channel or command channel is assigned to a communication bus, when the power supply is connected, the drive will display [Freewheel] ( nSt ) and remain in stop mode until the communication bus sends a command.


## Faults, which cannot be reset automatically

The cause of the fault must be removed before resetting by switching off and then on again.
SPF, AnF, SOF, tnF, bLF, brF, OPF1, OPF2 and OPF3 faults can be reset remotely by means of a logic input or command bit ([FAULT
RESET] (rSF-)) parameter, page 172).

| Fault | Probable cause | Remedy |
| :---: | :---: | :---: |
| b L F Brake sequence | - Brake release current not attained <br> - Brake engage frequency threshold [Brk eng. freq.] (bEn) only regulated when brake logic control is assigned. | - Check the drive/motor connection. <br> - Check the motor windings. <br> - Check the [I brk rel. lift.] (lbr) and [I brk rel. lower] (Ird) settings, page 126. <br> - Make the recommended settings for [Brk eng. freq.] (bEn), unregulated. |
| $\begin{aligned} & \text { CrF } \\ & \text { Capacitor load circuit } \end{aligned}$ | - Load relay control fault or charging resistor damaged | - Replace the drive. |
| EEFI, EEF Z EEPROM fault | - Internal memory fault | - Check the environment (electromagnetic compatibility). <br> - Replace the drive. |
| $\operatorname{InF} /$ to $\operatorname{InFb}$ Internal fault | - Internal fault | - Check the environment (electromagnetic compatibility). <br> - Replace the drive. |
| - [F Overcurrent | - Parameters in the [SETTINGS] (SEt-) and [1.4 MOTOR CONTROL] (drC-) menus are not correct. <br> - Inertia or load too high <br> - Mechanical locking | - Check the parameters. <br> - Check the size of the motor/drive/load. <br> - Check the state of the mechanism. |
| $5[F /$ to 5 [F5 Motor short-circuit | - Short-circuit or earthing at the drive output <br> - Significant earth leakage current at the drive output if several motors are connected in parallel | - Check the cables connecting the drive to the motor, and the insulation of the motor. <br> - Reduce the switching frequency. <br> - Connect chokes in series with the motor. |
| $\begin{array}{\|l} \hline 5 \square F \\ \text { Overspeed } \end{array}$ | - Instability or <br> - Driving load too high | - Check the motor, gain and stability parameters. <br> - Add a braking resistor. <br> - Check the size of the motor/drive/load. |
| $t \cap F$ <br> Auto-tuning fault | - Special motor or motor whose power is not suitable for the drive <br> - Motor not connected to the drive | - $\quad$ Motor control type] (Ctt) = [V/F 2pts] (UF2) or [V/F 5pts] (UF5) ([1.4MOTOR CONTROL] (drC-) menu) page 56 . <br> - Check the presence of the motor during auto-tuning. <br> - If an output contactor is being used, close it during auto-tuning. |
| 5 PF <br> Encoder feedback loss | - Encoder feedback signal missing | - Check the wiring between the encoder and the drive. <br> - Check the encoder. |
| AnF Load slipping fault | - The encoder speed feedback does not match the reference. | - Check the motor, gain and stability parameters. <br> - Add a braking resistor. <br> - Check the size of the motor/drive/load. <br> - Check the mechanical coupling of the encoder. |
| $\begin{array}{\|l\|} \hline E \subset F \\ \text { Encoder coupling } \end{array}$ | - The mechanical coupling of the encoder has come loose. | - Check the mechanical coupling of the encoder. |
| $b r F$ <br> Brake contact | - The brake feedback contact does not match the brake logic control. | - Check the feedback circuit and the brake logic control circuit. |
| $\begin{array}{\|l\|} \hline P r F \\ \text { Power removal } \end{array}$ | - Fault in the "Power removal" control circuit | - Replace the drive. |

## Faults, which can be reset with the automatic restart function, after the cause has disappeared

These faults can also be reset by disconnecting and reconnecting the power supply or by means of a logic input or command bit ([FAULT RESET] (rSt-) parameter, page 172).

| Fault | Probable cause | Remedy |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { L QF } \\ & \text { CANopen fault } \end{aligned}$ | - Interruption in communication on the CANopen bus | - Check the communication bus. <br> - Please refer to the product-specific documentation. |
| EPFI, EPF己 External fault | - According to user | - According to user |
| $\begin{aligned} & L F F \\ & 4-20 \mathrm{~mA} \text { loss } \end{aligned}$ | - Loss of the 4-20 mA reference on an analog input | - Check the connection on the analog inputs. |
| DbF Overvoltage during deceleration | - Overbraking or driving load | - Increase the deceleration time. <br> - Install a braking resistor if necessary. <br> - Activate the [Dec ramp adapt] (brA) function on page 106, if it is compatible with the application. |
| पHF Drive overheat | - Drive temperature too high | - Check the motor load, the drive ventilation and the environment. Wait for the motor to cool before restarting. |
| पLF Motor overload | - Triggered by motor current too | - Check the ItH setting for the motor thermal protection, check the motor load. Wait for the motor to cool before restarting. |
| DPF I 1 output phase loss ロPF 2 output phase loss DPF 3 output phase loss | - Loss of one phase at drive output <br> - Output contactor open <br> - Motor not connected or motor power too low <br> - Instantaneous instability in the motor current | - Check the connections from the drive to the motor. <br> - If an output contactor is being used, parameter [Output Phase Loss] (OPL) = [Output cut] (OAC) page 176. <br> - Test on a low power motor or without a motor: In factory settings mode, output phase loss detection is active [Output Phase Loss] (OPL) $=[$ Yes] (YES). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high-power drives), deactivate output phase loss detection by setting [Output Phase Loss]. (OPL) $=[\mathrm{No}]$ ( nO ). <br> - Check and optimize the following parameters: [IR compensation] (UFr) page 54, [Rated motor volt.] (UnS) and [Rated mot. current] ( nCr ) page 53, and perform [Auto tuning] (tUn) page 54. |
| प5F Overvoltage | - Mains voltage too high <br> - Disturbed mains | - Check the mains voltage. |
| PHF <br> Mains phase loss | - Drive incorrectly supplied or a fuse blown <br> - Loss of one phase <br> - 3-phase ATV71 used on a singlephase mains supply <br> - Unbalanced load This protection only operates with the drive on load. | - Check the power connection and the fuses. <br> - Reset. <br> - Use a 3 -phase mains supply. <br> - Disable the fault by setting [Input phase loss] (IPL) $=[\mathrm{No}]$ (nO), page ) 176 . |
| ILF Internal communication | - Communication fault between option card and drive | - Check the environment (electromagnetic compatibility). <br> - Replace the option card. <br> - Replace the drive. |
| $\begin{aligned} & \hline 5 L F I \\ & \text { Modbus fault } \end{aligned}$ | - Interruption in communication on the Modbus bus | - Check the communication bus. <br> - Please refer to the product-specific documentation. |
| $I L F$ Internal communication | - Communication fault between option card and drive | - Check the environment (electromagnetic compatibility). <br> - Replace the option card. <br> - Replace the drive. |
| $[n F$ <br> Communication card | - Communication fault on communication card | - Check the environment (electromagnetic compatibility). <br> - Replace the option card. <br> - Replace the drive. |
| PEF 1 PTC1 probe feedback | - PTC probes on motor 1 open or short-circuited | - Check the PTC probes and the wiring between them and the motor/drive. |
| PEF 2 <br> PTC2 probe feedback | - PTC probes on motor 2 open or short-circuited |  |
| PEF I PTC3 probe feedback | - PTC probes on motor 3 open or short-circuited |  |

## Faults－Causes－Remedies

## Faults，which can be reset with the automatic restart function，after the cause has disappeared （continued）

These faults can also be reset by disconnecting and reconnecting the power supply or by means of a logic input or command bit（［FAULT RESET］（rSt－）parameter，page 172）．

| Fault | Probable cause | Remedy |
| :---: | :---: | :---: |
| DEF I PTC1 probes temperature | －Detection of overheating of PTC probes on motor 1 | －Check the motor load and dimensions． <br> －Wait for the motor to cool before restarting． |
| ロヒF 己 <br> PTC2 probes temperature | －Detection of overheating of PTC probes on motor 2 |  |
| ロEFヨ <br> PTC3 probes temperature | －Detection of overheating of PTC probes on motor 3 |  |
| APF Application card | －Programmable card fault | －Please refer to the card－specific documentation． |
| SLF 己 PowerSuite | －Fault communicating with PowerSuite | －Check the PowerSuite connecting cable． |
| $\begin{aligned} & \hline 5 F \\ & \text { Torque limitation } \end{aligned}$ | －Switch to torque limitation | －Check if there are any mechanical problems． <br> －Check the［TORQUE LIMITATION］（tLA－）parameters on page 147 and the［TORQUE／CURRENT LIM．DET．］（SSA－） parameters on page 182）． |
| 5LF Graphic display terminal | －Fault communicating with the graphic display terminal | －Check the terminal connection． |
| $\begin{aligned} & E \perp F \\ & \text { IGBT overheat } \end{aligned}$ | －IGBT temperature too high | －Check the size of the motor／drive／load． <br> －Wait for the motor to cool before restarting． |

Faults，which can be reset as soon as their causes disappear

| Fault | Probable cause | Remedy |
| :---: | :---: | :---: |
| L F F Configuration fault | －The current configuration is inconsistent | －Return to factory settings or retrieve the backup configuration， if it is valid．See page xx |
| ［ F I <br> Configuration fault via serial link | －Invalid configuration The configuration loaded in the drive via the serial link is inconsistent． | －Check the configuration loaded previously． <br> －Load a compatible configuration． |
| $U 5$ F Undervoltage | －Mains supply too low <br> －Transient voltage dip <br> －Damaged load resistor | －Check the voltage and the voltage parameter． <br> －Replace the drive． |

User settings tables

Content of Simply start

Functions assigned to I/O

Other parameters

Index of functions

| [1.12-FACTORY SETTINGS] (Fst-) | 188 |
| :---: | :---: |
| [4. PASSWORD] (COd-) | 194 |
| [AUTO TUNING BY LI] | 162 |
| [Auto-tuning] | 34 |
| Command and reference channels | 86 |
| [2 wire] (2C) | 32 |
| [3 wire] (3C) | $\underline{32}$ |
| Output contactor command | 151 |
| Line contactor control | 149 |
| Brake logic control | 122 |
| Motor or configuration switching [MULTIMOTORS/CONFIG.] | 160 |
| Parameter set switching [PARAMETER SET SWITCH.] | 157 |
| [REFERENCE SWITCH] | 102 |
| [STOP CONFIGURATION] | 107 |
| [ENCODER CONFIGURATION] | $\underline{76}$ |
| [PULSE IN CONFIGURATION] | 74 |
| [CMD SWITCHING] | 170 |
| ENA SYSTEM | 60 |
| [Load sharing] | 63 |
| [FLUXING BY LI] | 119 |
| Limit switch management | 120 |
| [AUTO DC INJECTION] | 109 |
| [JOG] | 110 |
| High-speed hoisting: | 131 |
| Torque limit | 146 |
| Reference saving: | 118 |
| External weight measurement: | 129 |
| +/- speed | 114 |
| +/- speed around a reference | 116 |
| Positioning on limit switches or sensors | 153 |
| Motor thermal protection | 175 |
| Drive thermal protection | 177 |
| [RAMPS] | 104 |
| [FAULT RESET] | 172 |
| [AUTOMATIC RESTART] | 173 |
| [Noise reduction] | 62 |
| PID regulator | 135 |
| Torque regulation | 143 |
| [CATCH ON THE FLY] | 174 |
| [2nd CURRENT LIMIT.] | 148 |
| Summing input/Subtracting input/Multiplier | 101 |
| PTC probes | 171 |
| Traverse control | 163 |
| Preset speeds | 111 |

Index of parameter codes

| Code | Page |
| :---: | :---: |
| L A［－ |  |
| USP |  |
| t［［ |  |
| ［FL |  |
| CLFL |  |
| $b F_{r}$ |  |
| $n \mathrm{Pr}$ |  |
| Un5 |  |
| nLr |  |
| Fr 5 |  |
| п5P |  |
| $t F_{r}$ |  |
| ヒリn |  |
| tU5 |  |
| PHr |  |
| It H |  |
| AL［ |  |
| dE［ |  |
| LSP |  |
| H5P |  |
| L ا 1 |  |
| L 14月 |  |
| L 151 |  |
| L 152 |  |
| －1 1 ${ }^{\text {l }}$ |  |
| －İA |  |
| А 1ヨ |  |
| H 14月 |  |
| ALEr |  |
| FrH |  |
| $r \mathrm{Fr}^{\prime}$ |  |
| L Lr |  |
|  |  |
| 5Pd |  |
| UロP |  |
| $\square P_{r}$ |  |
| ULп |  |
| t Hr |  |
| tHd |  |
| APH |  |
| rth |  |
| Pt H |  |
| t $\boldsymbol{\sim}$ |  |
| rPL |  |



| Code | Page |
| :---: | :---: |
| F 4 |  |
| U 5 |  |
| F 5 |  |
| d［F |  |
| IdL |  |
| $1 d[2$ |  |
| td［ |  |
| tal |  |
| Ad［ |  |
| 5d［ 1 |  |
| td［1 |  |
| 5dL 2 |  |
| td［ 2 |  |
| $5 \mathrm{Fr}^{\text {r }}$ |  |
| ［L I |  |
| CL 己 |  |
| FLU |  |
| tL5 |  |
| 」 $\quad$ F |  |
| 」にt |  |
| $5 P 2$ |  |
| 5Pヨ |  |
| $5 P 4$ |  |
| $5 P 5$ |  |
| 5PE |  |
| $5 P 7$ |  |
| 5P日 |  |
| 5P9 |  |
| 5 P1ロ |  |
| 5 P I I |  |
| 5 PI2 |  |
| 5 Р1ヨ |  |
| 5 P14 |  |
| $5 \times 15$ |  |
| $5 \times 16$ |  |
| MFr |  |
| $5 r P$ |  |
| rPL |  |
| r IL |  |
| $r d L$ |  |
| P IL |  |
| $P \square L$ |  |
| PロH |  |
| PRL |  |
| PRH |  |
| PEr |  |
| P5r |  |
| $r P 己$ |  |



| Code | Page |
| :---: | :---: |
| $F 2$ |  |
| リヨ |  |
| F $\exists$ |  |
| 44 |  |
| F 4 |  |
| U 5 |  |
| F 5 |  |
| U［已 |  |
| U［P |  |
| F［ P |  |
| $E \cap 5$ |  |
| PGI |  |
| $E \cap[$ |  |
| $E \cap U$ |  |
| E $\cap$ H |  |
| LPE |  |
| C IE |  |
| r ${ }^{\text {P }}$ |  |
| ［LI |  |
| 5 Fr |  |
| nrd |  |
| $5 U L$ |  |
| $5 \square P$ |  |
| Ubr |  |
| Ьロ月 |  |
| Lレ月 |  |
| Lb「 |  |
| Lbく |  |
| ட ロ ¢ |  |
| しもくヨ |  |
| LbF |  |
| t［［ |  |
| t［ |  |
| rr 5 |  |
| L－1月 |  |
| LロId |  |
| b 5 P |  |
| H I 1 ${ }^{\text {a }}$ |  |
| H I It |  |
| U IL I |  |
| U IH I |  |
| H I IF |  |
| A I IE |  |
| － 115 |  |
| －12t |  |
| ［rLz |  |
| LrH己 |  |
| UIL己 |  |



| Code | Page |
| :---: | :---: |
| r 4 d |  |
| r 45 |  |
| r 4 H |  |
| LQ I |  |
| LロId |  |
| Lロ 15 |  |
| LロIH |  |
| Lロ己 |  |
| Lロこd |  |
| LQ ${ }^{\text {L }}$ |  |
| LロこH |  |
| しロヨ |  |
| Lロヨd |  |
| Lロヨ5 |  |
| LロヨH |  |
| L $\square$ |  |
| L04d |  |
| Lロ45 |  |
| L $\square 4 H$ |  |
| ALI |  |
| 月吅 |  |
| 月以 ${ }^{\text {¢ }}$ |  |
| A 1 |  |
| FロIt |  |
| FロL I |  |
| AロH I |  |
| UロL I |  |
| UロH I |  |
| AロIF |  |
| 月ロ己 |  |
| 月ロ2t |  |
| AロL |  |
| нロH己 |  |
| UロL |  |
| UロH己 |  |
| Aロ $F$ |  |
| 月ロヨ |  |
| \＆ロヨヒ |  |
| fロレヨ |  |
| AロHヨ |  |
| UロLヨ |  |
| UロHヨ |  |
| \＆ロヨF |  |
| Fr I |  |
| $r 1 n$ |  |
| P5t |  |
| LHLF |  |
| C［ 5 |  |


| Code | Page |
| :---: | :---: |
| ［d I |  |
| ᄃdz |  |
| rFL |  |
| Fre |  |
| ᄃロP |  |
| r 51 |  |
| Fr Ib |  |
| 5月己 |  |
| 5月ヨ |  |
| d月 |  |
| d 月 $^{\text {f }}$ |  |
| ПН己 |  |
| Пヵヨ |  |
| rPt |  |
| Inr |  |
| H［［ |  |
| dE［ |  |
| t ${ }^{\text {I }}$ |  |
| ヒ日己 |  |
| ヒ 月 ヨ |  |
| t 月 4 |  |
| Frt |  |
| rP5 |  |
| HL 2 |  |
| dE 己 |  |
| br ${ }^{\text {f }}$ |  |
| 5tt |  |


[^0]:    $\square$ In 3-wire control, the assignment of inputs LI1 to LI7 shifts.

[^1]:    

    These parameters only appear if the corresponding function has been selected in another menu．When the corresponding function is also accessible and adjustable from within the configuration menu，to aid programming their description is detailed in these menus，on the pages indicated．

[^2]:    (1)The parameter can also be accessed in the [1.3-SETTINGS] (SEt-) menu.

